Dendritic actin filament nucleation causes traveling waves and patches.

Phys Rev Lett

Department of Physics, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, Missouri 63130, USA.

Published: June 2010

The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947330PMC
http://dx.doi.org/10.1103/PhysRevLett.104.228102DOI Listing

Publication Analysis

Top Keywords

traveling waves
8
waves patches
8
dendritic actin
4
actin filament
4
filament nucleation
4
nucleation traveling
4
waves
4
patches
4
patches polymerization
4
polymerization actin
4

Similar Publications

Interface Acoustic Waves in 128° YX-LiNbO/SU-8/Overcoat Structures.

Micromachines (Basel)

January 2025

Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.

The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.

View Article and Find Full Text PDF

The local pulse wave velocity (PWV) from large elastic arteries and its pressure-dependent changes within a cardiac cycle are potential biomarkers for cardiovascular risk stratification. However, pulse wave reflections can impair the accuracy of local PWV measurements. We propose a method to measure pressure-dependent variations in local PWV while minimizing the influence of pulse wave reflections.

View Article and Find Full Text PDF

Critical mobility in policy making for epidemic containment.

Sci Rep

January 2025

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, 07122, Spain.

When considering airborne epidemic spreading in social systems, a natural connection arises between mobility and epidemic contacts. As individuals travel, possibilities to encounter new people either at the final destination or during the transportation process appear. Such contacts can lead to new contagion events.

View Article and Find Full Text PDF

This work explores the mathematical technique known as the Hirota bilinear transformation to investigate different wave behaviors of the nonlinear Rosenau equation, which is fundamental in the study of wave occurrences in a variety of physical systems such as fluid dynamics, plasma physics, and materials science, where nonlinear dynamics and dispersion offer significant functions. This equation was suggested to describe the dynamic behaviour of dense discrete systems. We use Mathematica to investigate these wave patterns and obtained variety of wave behaviors, such as M-shaped waves, mixed waves, multiple wave forms, periodic lumps, periodic cross kinks, bright and dark breathers, and kinks and anti-kinks.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!