We describe a proof-of-principal experiment demonstrating the use of spread spectrum technology at the single photon level. We show how single photons with a prescribed temporal shape, in the presence of interfering noise, may be hidden and recovered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.104.223601 | DOI Listing |
BMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.
Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.
Phys Rev Lett
December 2024
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France.
We present a method to systematically identify and classify quantum optical nonclassical states as classical or nonclassical based on the resources they create on a bosonic quantum computer. This is achieved by converting arbitrary bosonic states into multiple modes, each occupied by a single photon, thereby defining qubits of a bosonic quantum computer. Starting from a bosonic classical-like state in a representation that explicitly respects particle number superselection rules, we apply universal gates to create arbitrary superpositions of states with the same total particle number.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Alpert Medical School of Brown University, Department of Medicine, Division of Cardiology, Rhode Island Hospital.
Cardiac Positron Emission Tomography (PET) can be used for the assessment of myocardial perfusion. Compared to other cardiac imaging techniques, notably Single Photon Emission Computer Tomography (SPECT), cardiac PET offers superior image resolution, higher accuracy, quantitative measures of myocardial perfusion, lower radiation exposure, and shorter image acquisition time. However, PET tends to be costlier and less widely available than SPECT due to the specialized equipment needed for generating the necessary radiotracers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.
Antimony-119 (119Sb) is one of the most attractive Auger-electron emitters identified to date, but it remains practically unexplored for targeted radiotherapy because no chelators have been identified to stably bind this metalloid in vivo. In a departure from current studies focused on chelator development for Sb(III), we explore the chelation chemistry of Sb(V) using the tris-catecholate ligand TREN-CAM. Through a combination of radiolabeling, spectroscopic, solid-state, and computational studies, the radiochemistry and structural chemistry of TREN-CAM with 1XX/natSb(V) were established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!