We study the double occupancy in a fermionic Mott insulator at half filling generated via a dynamical periodic modulation of the hopping amplitude. Tuning the modulation amplitude, we describe a crossover in the nature of doublon-holon excitations from a Fermi golden rule regime to damped Rabi oscillations. The decay time of excited states diverges at a critical modulation strength, signaling the transition to a dynamically bound nonequilibrium state of doublon-holon pairs. A setup using a fermionic quantum gas should allow the study of the critical exponents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.104.220402 | DOI Listing |
Natl Sci Rev
December 2024
State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.
The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.
View Article and Find Full Text PDFNano Lett
December 2024
Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany.
Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Bioinspired sensory systems based on spike neural networks have received considerable attention in resolving high energy consumption and limited bandwidth in current sensory systems. To efficiently produce spike signals upon exposure to external stimuli, compact neuron devices are required for signal detection and their encoding into spikes in a single device. Herein, it is demonstrated that Mott oscillative spike neurons can integrate sensing and ceaseless spike generation in a compact form, which emulates the process of evoking photothermal sensing in the features of biological photothermal nociceptors.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Tantalum disulfide (1T-TaS), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany.
ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!