Functional superconductor interfaces from broken time-reversal symmetry.

Phys Rev Lett

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany.

Published: May 2010

The breaking of time-reversal symmetry in a triplet superconductor Josephson junction is shown to cause a magnetic instability of the tunneling barrier. Using a Ginzburg-Landau analysis of the free energy, we predict that this novel functional behavior reflects the formation of an exotic Josephson state, distinguished by the existence of fractional flux quanta at the barrier. The crucial role of the orbital pairing state is demonstrated by studying complementary microscopic models of the junction. Signatures of the magnetic instability are found in the critical current of the junction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.104.197001DOI Listing

Publication Analysis

Top Keywords

time-reversal symmetry
8
magnetic instability
8
functional superconductor
4
superconductor interfaces
4
interfaces broken
4
broken time-reversal
4
symmetry breaking
4
breaking time-reversal
4
symmetry triplet
4
triplet superconductor
4

Similar Publications

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.

View Article and Find Full Text PDF

The 2025 Motile Active Matter Roadmap.

J Phys Condens Matter

January 2025

Biozentrum, University of Basel, Spitalstrasse 41, Basel, Basel-Stadt, 4056, SWITZERLAND.

Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials.

View Article and Find Full Text PDF

Rashba effect originates from the reduction of point-group symmetries.

Phys Chem Chem Phys

January 2025

Ronin Institute, Montclair, New Jersey 07043, USA.

The Rashba effect in a nonmagnetic condensed-matter system is described by the reduction of point-group symmetries. The inversion, two-fold rotation, and reflection symmetries transforming the wavevector to - are identified as the origin of a degenerate state according to the time-reversal symmetry. The lack of these symmetries in a bulk system or the breaking of these in a surface system is then identified as the origin of a nondegenerate state.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!