A strongly coupled dusty plasma containing strongly correlated negatively charged dust grains and weakly correlated (Maxwellian) electrons and ions has been considered. The effects of polarization force (which arises due to the interaction between thermal ions and highly negatively charged dust grains) and effective dust temperature (which arises from the electrostatic interactions among highly negatively charged dust and from the dust thermal pressure) on the dust-acoustic (DA) solitary and shock waves propagating in such a strongly coupled dusty plasma are taken into account. The DA solitary and shock waves are found to exist with negative potential only. It has been shown that the strong correlation among the charged dust grains is a source of dissipation and is responsible for the formation of the DA shock waves. It has also been shown that the effects of polarization force and effective dust-temperature significantly modify the basic features (e.g., amplitude, width, and speed) of the DA solitary and shock waves. It has been suggested that a laboratory experiment be performed to test the theory presented in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.82.026405 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
Friction stir welding (FSW) is a solid-state welding process that uses a rotating tool to soften and stir the base metal, thereby joining it. A special type of tool that has attracted the interest of researchers is the so-called bobbin tool (BTFSW), which, unlike conventional tools with one shoulder, features two shoulders that envelop the base metal from both the top and bottom sides. As a result, significant tensile stresses develop on both sides of the weld, caused by the action of both tool shoulders.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
The 41 Institute of the Sixth Academy of China Aerospace Science and Industry, Hohhot 010010, China.
Ammonium dinitramide (ADN) is a new green oxidant, which is a kind of high-energy ionic liquid and has been widely used in the field of liquid propulsion. When it is used in laser plasma propulsion, its poor absorption coefficient significantly limits its application. To address the issue, this paper investigates the effects of the content of the infrared dye and the laser energy density on the laser propulsion performance of an ADN-based liquid propellant.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.
This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.
View Article and Find Full Text PDFDalton Trans
January 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.
In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!