We consider the Eigen quasispecies model with a dynamic environment. For an environment with sharp-peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an asymptotic stationary state in which the quasispecies population changes regularly according to the regular environmental change. From this stationary state we estimate the maximum and the minimum mutation rates for a quasispecies to survive under the changing environment and calculate the optimum mutation rate that maximizes the population growth. Interestingly we find that the optimum mutation rate in the Eigen model is lower than that in the Crow-Kimura model, and at their optimum mutation rates the corresponding mean fitness in the eigenmodel is lower than that in the Crow-Kimura model, suggesting that the mutation process which occurs in parallel to the replication process as in the Crow-Kimura model gives an adaptive advantage under changing environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.82.021904 | DOI Listing |
Microbiol Spectr
January 2025
Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.
View Article and Find Full Text PDFJ Gynecol Oncol
December 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
Objective: To explore the characteristics and survival outcomes of ovarian squamous cell carcinoma (SCC) and the treatment effectiveness of immune checkpoint inhibitors (ICIs).
Methods: Patients diagnosed with ovarian SCC at Peking Union Medical College Hospital between January 2000 and September 2023 were included. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method.
Liver Int
February 2025
Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France.
Background: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease, associated with MEFV mutations. FMF patients can experience liver involvement, potentially leading to cirrhosis.
Objectives: This study aimed to evaluate liver involvement in FMF patients at a French tertiary centre for adult FMF.
Genetics
January 2025
Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
Multiple methods of demography inference are based on the ancestral recombination graph. This powerful approach uses observed mutations to model local genealogies changing along chromosomes by historical recombination events. However, inference of underlying genealogies is difficult in regions with high recombination rate relative to mutation rate due to the lack of mutations representing genealogies.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
Background: Patients with non-small cell lung cancer (NSCLC) are prone to developing brain metastases (BMs), particularly those with epidermal growth factor receptor (EGFR) mutations. In clinical practice, treatment-naïve EGFR-mutant NSCLC patients with asymptomatic BMs tend to choose EGFR-tyrosine kinase inhibitors (TKIs) as first-line therapy and defer intracranial radiotherapy (RT). However, the effectiveness of upfront intracranial RT remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!