We present numerical simulations as well as experimental results concerning transitions between Taylor vortices and spiral vortices in the Taylor-Couette system with rigid, nonrotating lids at the cylinder ends. These transitions are performed by wavy structures appearing via a secondary bifurcation out of Taylor vortices and spirals, respectively. In the presence of these axial end walls, pure spiral solutions do not occur as for axially periodic boundary conditions but are substituted by primary bifurcating, stable wavy spiral structures. Similarly to the periodic system, we found a transition from Taylor vortices to wavy spirals mediated by so-called wavy Taylor vortices and, on the other hand, a transition from wavy spirals to Taylor vortices triggered by a propagating defect. We furthermore observed and investigated the primary bifurcation of wavy spirals out of the basic circular Couette flow with Ekman vortices at the cylinder ends.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.066313 | DOI Listing |
Sci Rep
November 2024
Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000, Grenoble, France.
The most prominent and persistent feature of the eastern Mediterranean Levantine Basin (LB) is the warm anticyclonic Cyprus Eddy (CE) located above the Eratosthenes Seamount (ESM). This eddy periodically couples with two smaller cyclonic and anticyclonic eddies, the South Shikmona Eddy (SSE) and North Shikmona Eddy (NSE), which form downstream. The reason for the zonal drift of the CE center and the formation mechanism of the CE, SSE and NSE is largely debated today, yet the upwelling and biological productivity of the LB can be strongly impacted by the local dynamics.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany.
The bacterium is investigated as a model organism for the cultivation and separation of ethanol as a product by in situ extraction in continuous flow microreactors. The considered microreactor is the Coiled Flow Inverter (CFI), which consists of a capillary coiled onto a support structure. Like other microreactors, the CFI benefits from a high surface-to-volume ratio, which enhances mass and heat transfer.
View Article and Find Full Text PDFPhys Rev E
August 2024
GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, 64291 Darmstadt, Germany.
A model for the single mode, two-dimensional Rayleigh-Taylor instability in ideal, incompressible, immiscible, and inviscid fluids is developed as an extension of a previous linear model based on the Newton's second law [A. R. Piriz et al.
View Article and Find Full Text PDFUltrason Sonochem
August 2024
Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia. Electronic address:
The paper investigates the oil-water emulsification process inside a micro-venturi channel. More specifically, the possible influence of Kelvin-Helmholtz instability on the emulsification process. High-speed visualizations were conducted inside a square venturi constriction with throat dimensions of 450 µm by 450 µm, both under visible light and X-Rays.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!