Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical, chemical, and biological nature. In the presence of a small perturbation, the spiral wave's center of rotation and fiducial phase may change over time, i.e., the spiral wave drifts. In linear approximation, the velocity of the drift is proportional to the convolution of the perturbation with the spiral's response functions, which are the eigenfunctions of the adjoint linearized operator corresponding to the critical eigenvalues λ=0,±iω . Here, we demonstrate that the response functions give quantitatively accurate prediction of the drift velocities due to a variety of perturbations: a time dependent, periodic perturbation (inducing resonant drift); a rotational symmetry-breaking perturbation (inducing electrophoretic drift); and a translational symmetry-breaking perturbation (inhomogeneity induced drift) including drift due to a gradient, stepwise, and localized inhomogeneity. We predict the drift velocities using the response functions in FitzHugh-Nagumo and Barkley models, and compare them with the velocities obtained in direct numerical simulations. In all cases good quantitative agreement is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.066202 | DOI Listing |
JCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFClin J Am Soc Nephrol
January 2025
Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA.
Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.
Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.
Br J Surg
December 2024
Department of Anaesthesiology, Nara Medical University, Nara, Japan.
Background: The WHO Disability Assessment Schedule (WHODAS) 2.0 is widely used for detecting postoperative functional disability. Its responsiveness for detecting disability has been evaluated at 1 year after surgery, with no long-term evaluation.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!