Taylor's fluctuation scaling (FS) has been observed in many natural and man-made systems revealing an amazing universality of the law. Here, we give a reliable explanation for the origins and abundance of Taylor's FS in different complex systems. The universality of our approach is validated against real world data ranging from bird and insect populations through human chromosomes and traffic intensity in transportation networks to stock market dynamics. Using fundamental principles of statistical physics (both equilibrium and nonequilibrium) we prove that Taylor's law results from the well-defined number of states of a system characterized by the same value of a macroscopic parameter (i.e., the number of birds observed in a given area, traffic intensity measured as a number of cars passing trough a given observation point or daily activity in the stock market measured in millions of dollars).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.066112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!