Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235 A&B, Cambridge, Massachusetts 02139, USA.

Published: June 2010

AI Article Synopsis

Article Abstract

Mechanical properties of structural protein materials are crucial for our understanding of biological processes and disease states. Through utilization of molecular simulation based on stress wave tracking, we investigate mechanical energy transfer processes in fibrous beta-sheet-rich proteins that consist of highly ordered hydrogen bond (H-bond) networks. By investigating four model proteins including two morphologies of amyloids, beta solenoids, and silk beta-sheet nanocrystals, we find that all beta-sheet-rich protein fibrils provide outstanding elastic moduli, where the silk nanocrystal reaches the highest value of ≈40 GPa. However, their capacities to dissipate mechanical energy differ significantly and are controlled strongly by the underlying molecular structure of H-bond network. Notably, silk beta-sheet nanocrystals feature a ten times higher energy damping coefficient than others, owing to flexible intrastrand motions in the transverse directions. The results demonstrate a unique feature of silk nanocrystals, their capacity to simultaneously provide extreme stiffness and energy dissipation capacity. Our results could help one to explain the remarkable properties of silks from an atomistic and molecular perspective, in particular its great toughness and energy dissipation capacity, and may enable the design of multifunctional nanomaterials with outstanding stiffness, strength, and impact resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.81.061910DOI Listing

Publication Analysis

Top Keywords

mechanical energy
12
energy transfer
8
fibrous beta-sheet-rich
8
beta-sheet-rich proteins
8
silk beta-sheet
8
beta-sheet nanocrystals
8
energy dissipation
8
dissipation capacity
8
energy
5
mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!