Reaction-diffusion systems where transition rates exhibit quenched disorder are common in physical and chemical systems. We study pair reactions on a periodic two-dimensional lattice, including continuous deposition and spontaneous desorption of particles. Hopping and desorption are taken to be thermally activated processes. The activation energies are drawn from a binary distribution of well depths, corresponding to "shallow" and "deep" sites. This is the simplest nontrivial distribution, which we use to examine and explain fundamental features of the system. We simulate the system using kinetic Monte Carlo methods and provide a thorough understanding of our findings. We show that the combination of shallow and deep sites broadens the temperature window in which the reaction is efficient, compared to either homogeneous system. We also examine the role of spatial correlations, including systems where one type of site is arranged in a cluster or a sublattice. Finally, we show that a simple rate equation model reproduces simulation results with very good accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.061109 | DOI Listing |
Materials (Basel)
December 2024
Department of Applied Physics, Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
SrCu(BO) (Sr-122) has attracted considerable interest as a quasi-two-dimensional S = 1/2 Heisenberg antiferromagnetic spin system with a Shastry-Sutherland lattice (SSL) structure. It features a Cu spin dimer ground state and exhibits intra-dimer Dzyaloshinskii-Moriya interactions, making Sr-122 a fascinating platform for studying quantum magnetic phenomena. In this study, we investigate the β-phase of SrCu(BO) (β-Sr-212), which retains the same spin structure as Sr-122, to explore how the carrier concentration affects the spin gap.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
A coarse-grained model of a two-dimensional colloidal suspension was designed. The model was athermal and, in addition, a lattice approximation was introduced. It consisted of solvent (monomer) molecules, dimer molecules, and immobile impenetrable obstacles that introduced additional heterogeneity into the system.
View Article and Find Full Text PDFACS Nano
January 2025
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
With the potential to surpass the Shockley-Queisser (S-Q) limitation for solar energy conversion, the bulk photovoltaic (BPV) effect, which is induced by the broken inversion symmetry of the lattice, presents prospects for future light-harvesting technologies. However, the development of BPV is largely limited by the low solar spectrum conversion efficiency of existing noncentrosymmetric materials with wide band gaps. This study reports that the strain-induced reduction of inversion symmetry can enhance the second-order nonlinear susceptibility (χ) of SnPSe crystals by an order of magnitude, which contributes to an extremely high value of 1.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, Zhejiang, China.
Further miniaturization of magnetic nanomaterials is intrinsically accompanied by a reduction in spin ordered domains, resulting in size-dependent magnetic behaviors. Consequently, a longstanding roadblock in the advancement of nanodevices based on magnetic nanomaterials is the absence of a method to beat the size-dependent limit in nanomagnetism. Here, we discover and exploit a spin-lattice coupling effect in three-dimensional freestanding magnetic nanoparticles to beat the size-dependent limit for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!