Stability of buoyant convection in a layer submitted to acoustic streaming.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS/Université de Lyon-Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon-ECL, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France.

Published: May 2010

The linear stability of the flows induced in a fluid layer by buoyant convection (due to an applied horizontal temperature gradient) and by acoustic streaming (due to an applied horizontal ultrasound beam) is studied. The vertical profiles of the basic flows are determined analytically, and the eigenvalue problem resulting from the temporal stability analysis is solved by a spectral Tau Chebyshev method. Pure acoustic streaming flows are found to be sensitive to a shear instability developing in the plane of the flow (two-dimensional instability), and the thresholds for this oscillatory instability depend on the normalized width Hb of the ultrasound beam with a minimum for Hb=0.32 . Acoustic streaming also affects the stability of the buoyant convection. For a centered beam, effects of stabilization are obtained at small Prandtl number Pr for large beam widths Hb (two-dimensional shear instability) and for moderate Pr (three-dimensional oscillatory instability), but destabilization is also effective at small Pr for small beam widths Hb and at large Pr with a spectacular decrease of the thresholds of the three-dimensional steady instability. An adequate decentring of the ultrasound beam can enhance the stabilization. Insight into the stabilizing and destabilizing mechanisms is gained from the analysis of the fluctuating energy budget associated with the disturbances at threshold. The modifications affecting the two-dimensional shear instability thresholds are strongly connected to modifications of the velocity fluctuations when acoustic streaming is applied. Concerning the three-dimensional steady instability, the spectacular decrease of the thresholds is explained by the extension of the zone with inverse stratification in the lower half of the layer.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.81.056309DOI Listing

Publication Analysis

Top Keywords

acoustic streaming
20
buoyant convection
12
ultrasound beam
12
shear instability
12
stability buoyant
8
applied horizontal
8
streaming applied
8
instability
8
instability thresholds
8
oscillatory instability
8

Similar Publications

The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.

View Article and Find Full Text PDF

Introduction: In stressful times, people often listen to "coping songs" that help them reach emotional well-being goals. This paper is a first attempt to map the connection between an individual's well-being goals and their chosen coping song.

Methods: We assembled a large-scale dataset of 2,804 coping songs chosen by individuals from 11 countries during COVID-19 lockdown.

View Article and Find Full Text PDF

The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%).

View Article and Find Full Text PDF

Background And Objectives: Acoustofluidic manipulation of particles and biological cells has been widely applied in various biomedical and engineering applications, including effective separation of cancer cell, point-of-care diagnosis, and cell patterning for tissue engineering. It is often implemented within a polydimethylsiloxane (PDMS) microchannel, where standing surface acoustic waves (SSAW) are generated by sending two counter-propagating ultrasonic waves on a piezoelectric substrate.

Methods: In this paper, we develop a full cross-sectional model of the acoustofluidic device using finite element method, simulating the wave excitation on the substrate and wave propagation in both the fluid and the microchannel wall.

View Article and Find Full Text PDF

Pulse Ultrasound-Based Response Enhancement of a MOX Gas Sensor.

ACS Sens

December 2024

State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

In this work, a new method to enhance the sensing response of an ultrasonically catalyzed metal oxide gas sensor has been proposed and developed, in which pulse ultrasound is employed to enhance the redox reaction at the sensing surface. It is experimentally confirmed that with a proper pulse width, the negative effect of acoustic streaming on the ultrasonic enhancement process can be effectively suppressed. Comparing the steady responses of five target gases under the pulse and continuous ultrasound, respectively, it is found that the pulse ultrasound causes a better catalysis effect, and response enhancement (RE) by the pulse ultrasound with an optimal pulse width depends on the ultrasonic strength as well as the species and concentration of the target gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!