We report here a unique in-plane self-templating electrochemical growth of arrays of copper nanopearl chains from an ultrathin layer of CuSO4 electrolyte. Scanning electron microscopy indicates that the electrodeposit filaments form equally spaced bundles, which consist of long, straight, pearl-chain-like copper filaments with corrugated periodic structure. The bundle separation can be tuned by changing the applied electric current in electrodeposition. Experiments show that the periodic morphology on the nanopearl chain corresponds to the periodic distribution of copper and cuprous oxide. The mechanism for the bundle formation is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.81.051607 | DOI Listing |
RSC Adv
December 2024
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China +86-021-54340130 +86-021-54340130.
Surfactant-free microemulsions (SFMEs) composed of tetraethyl orthosilicate (TEOS), ethanol, and water have been successfully fabricated by visual titration and electrical conductivity methods. Three types of SFMEs, water in TEOS (W/O), bicontinuous (BC) and TEOS in water (O/W), were identified by dynamic light scattering and transmission electron microscopy with negative-staining methods. We demonstrated that there are significant differences in the properties of silica products synthesized with different types of SFMEs, and monodispersed silica colloidal spheres (MSCSs) can only be synthesized in the O/W type SFMEs.
View Article and Find Full Text PDFNano Lett
August 2024
Department of Bioengineering, University of California, Berkeley, California 94720, United States.
Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh).
View Article and Find Full Text PDFSmall
May 2024
Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China.
Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method.
View Article and Find Full Text PDFSmall
July 2022
School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China.
The precise and comprehensive manipulation of the component, size, and geometric nano-architecture of platinum-based electrocatalysts into porous and hollow structure can effectively impart the catalysts with substantially improved electrochemical performance, yet remain formidably challenging. Herein, a straightforward fabrication of porous platinum-copper alloyed nanobowls (abbreviated as Pt Cu NBs hereafter) assembled by ultrafine nanoparticles (≈2.9 nm) via a one-pot hydrothermal approach with the assistance of a structure-directing agent of N,N'-methylenebisacrylamide (MBAA) is reported.
View Article and Find Full Text PDFJACS Au
February 2022
Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.
Synthesis of porous, covalent crystals such as zeolites and metal-organic frameworks (MOFs) cannot be described adequately using existing crystallization theories. Even with the development of state-of-the-art experimental and computational tools, the identification of primary mechanisms of nucleation and growth of MOFs remains elusive. Here, using time-resolved in-situ X-ray scattering coupled with a six-parameter microkinetic model consisting of ∼1 billion reactions and up to ∼100 000 metal nodes, we identify autocatalysis and oriented attachment as previously unrecognized mechanisms of nucleation and growth of the MOF UiO-66.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!