The preparation, characterization, and analysis of physicochemical and biological properties of a new bioactive polymer system, based on a copolymer of an acrylic derivative of triflusal (a molecule with chemical structure related to aspirin with antiaggregating activity for platelets) is described and evaluated as thin bioactive coating for vascular grafts and coronary stents. The acrylic monomer derived from triflusal (THEMA) provides random copolymers when it is polymerized with butyl acrylate (BA), according to their reactivity ratios, r(THEMA) = 1.05 and r(BA) = 0.33. The copolymer THBA70, containing a molar composition f(THEMA) = 0.45 and f(BA) = 0.55 presents the optimal properties of stability, flexibility, and adhesion, with a T(g) = 21 ± 2 °C, to be applied as bioactive and biostable coatings for vascular grafts and coronary stents. Thin films of this copolymer system present an excellent biocompatibility and a good inherent antiaggregant activity for platelets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm100801k | DOI Listing |
Free Radic Biol Med
January 2025
Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.
View Article and Find Full Text PDFNutrients
December 2024
Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy.
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs).
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy.
Based on the established neuroprotective properties of indole-based compounds and their significant potential as multi-targeted therapeutic agents, a series of synthetic indole-phenolic compounds was evaluated as multifunctional neuroprotectors. Each compound demonstrated metal-chelating properties, particularly in sequestering copper ions, with quantitative analysis revealing approximately 40% chelating activity across all the compounds. In cellular models, these hybrid compounds exhibited strong antioxidant and cytoprotective effects, countering reactive oxygen species (ROS) generated by the Aβ(25-35) peptide and its oxidative byproduct, hydrogen peroxide, as demonstrated by quantitative analysis showing on average a 25% increase in cell viability and a reduction in ROS levels to basal states.
View Article and Find Full Text PDFRev Esp Anestesiol Reanim (Engl Ed)
December 2024
Departamento de Anestesiología y Reanimación, Hospital del Mar - Instituto de Investigación (IMIM), Barcelona, Spain.
Objective: To assess the perioperative management of haemostasis and transfusion practices in adult patients undergoing craniotomies.
Method: Online questionnaire addressed to Spanish anaesthesiologists and promoted by the Neurosciences and Haemostasis, Transfusion Medicine and Fluid Therapy Sections of SEDAR. The questionnaire was sent by email and social media, and was active between June and October 2022.
Molecules
December 2024
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
This study focuses on the use of three isostructural NO donor ligands, specifically known to form complexes with copper ions, to chelate Cu(II) from aqueous solutions. The corresponding Cu(II) complexes feature a dinuclear copper core mimicking the active site of natural superoxide dismutase (SOD) enzymes while also creating a coordination environment favorable for catalase (CAT) activity, being thus appealing as catalytic antioxidant systems. Given the critical role of copper dysregulation in the pathophysiology of Alzheimer's disease (AD), these complexes may help mitigate the harmful effects of free Cu(II) ions: the goal is to transform copper's reactive oxygen species (ROS)-generating properties into beneficial ROS-scavenging action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!