Characterization of the biochemical properties and identification of amino acids forming the catalytic center of 3C-like proteinase of porcine reproductive and respiratory syndrome virus.

Biotechnol Lett

Division of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.

Published: December 2010

The non-structural protein 4 (Nsp4) of porcine reproductive and respiratory syndrome virus (PRRSV) functions as a 3C-like proteinase (3CLpro) and plays a pivotal role in gene expression and replication. We have examined the biochemical properties of PRRSV 3CLpro and identified those amino acid residues involved in its catalytic activity as a prelude to developing anti-PRRSV strategies. The 3C-like proteinase (3CLpro) of porcine reproductive and respiratory syndrome virus (PRRSV) was expressed in Escherichia coli and characterized. The optimal temperature and pH for its proteolytic activity were 8°C and 7.5, respectively. Na(+) (1000 mM) and K(+) (500 mM) were not inhibitory to its activity but Cu(2+), Zn(2+), PMSF and EDTA were significantly inhibitory. His(39), Asp(64) and Ser(118) residues were identified to form the catalytic triad of PRRSV 3CLpro by a series of site-directed mutagenesis analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088359PMC
http://dx.doi.org/10.1007/s10529-010-0370-1DOI Listing

Publication Analysis

Top Keywords

3c-like proteinase
12
porcine reproductive
12
reproductive respiratory
12
respiratory syndrome
12
syndrome virus
12
biochemical properties
8
virus prrsv
8
proteinase 3clpro
8
prrsv 3clpro
8
characterization biochemical
4

Similar Publications

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

SARS-CoV-2 3CL (main protease) regulates caspase activation of gasdermin-D/E pores leading to secretion and extracellular activity of 3CL.

Cell Rep

December 2024

Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Yonsei Frontier Lab, Yonsei University, 50 Yonsei-ro, Sudaemoon-ku, Seoul 03722, Republic of Korea. Electronic address:

SARS-CoV-2 3C-like protease (3CL or M) cleaves the SARS-CoV-2 polyprotein and >300 intracellular host proteins to enhance viral replication. By lytic cell death following gasdermin (GSDM) pore formation in cell membranes, antiviral pyroptosis decreases 3CL expression and viral replication. Unexpectedly, 3CL and nucleocapsid proteins undergo unconventional secretion from infected cells via caspase-activated GSDMD/E pores in the absence of cell lysis.

View Article and Find Full Text PDF

ROC-guided virtual screening, molecular dynamics simulation, and bioactivity validation assessment Z195914464 as a 3CL Mpro inhibitor.

Biophys Chem

February 2025

Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Economic Development Zone, 330013 Nanchang City, Jiangxi Province, China. Electronic address:

Discovering novel class anti-SARS-CoV-2 compounds with novel backbones is essential for preventing and controlling SARS-CoV-2 transmission, which poses a substantial threat to the health and social sustainable development of the global population because of its high pathogenicity and high transmissibility. Although the potential mutation of SARS-CoV-2 might diminish the therapeutic efficacy of drugs, 3CL Mpro is the target highly conservative in contrast with other targets. It is an essential enzyme for coronavirus replication.

View Article and Find Full Text PDF

3-Chymotrypsin-like protease (3CL) is a prominent target against pathogenic coronaviruses. Expert knowledge of the cysteine-targeted covalent reaction mechanism is crucial to predict the inhibitory potency of approved inhibitors against 3CLs of SARS-CoV-2 variants and perform structure-based drug design against newly emerging coronaviruses. We carried out an extensive array of classical and hybrid QM/MM molecular dynamics simulations to explore covalent inhibition mechanisms of five well-characterized inhibitors toward SARS-CoV-2 3CL and its mutants.

View Article and Find Full Text PDF

Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights.

Viruses

November 2024

Instituto de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CCS, Bloco H-Sala H29, Rio de Janeiro 21941-902, RJ, Brazil.

Endemic and pandemic viruses represent significant public health challenges, leading to substantial morbidity and mortality over time. The COVID-19 pandemic has underscored the urgent need for the development and discovery of new, potent antiviral agents. In this study, we present the synthesis and anti-SARS-CoV-2 activity of a series of benzocarbazoledinones, assessed using cell-based screening assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!