Incubation of human polymorphonuclear leukocytes in a glucose-free Krebs-Ringer bicarbonate buffer for 2 h resulted in glycogen depletion, decreased phosphorylase activity and increased synthase-R activity. Addition of dialyzed latex particles to starved leukocytes revealed a very rapid ingestion rate (half-maximal ingestion within 30 s). This uptake is followed by glycogenolysis associated with an immediate two-fold increase in phosphorylase a activity and a synthase-R to -D conversion within 30 s. Furthermore, in rapid time-course experiments with phagocytozing cells we found that the concentration of cyclic AMP increased by 93% within 15 s and returned to baseline values at 1 min. In a medium without added calcium and with 1 mM ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid, phagocytosis was blocked, cyclic AMP formation decreased by 50% and phosphorylase activation was abolished, but the conversion of synthase-R to -D was preserved. Addition of calcium ions to cells suspended in a calcium-free buffer without added latex results in phosphorylase activation and glycogenolysis, but not in cyclic AMP increase or synthase-R to -D conversion. Measurements of 45Ca efflux during phagocytosis suggest an initial increase in cytosolic calcium obtained by a release of membrane-bound 45Ca. Activation of phosphorylase during phagocytosis is thus presumably due to an increase in cytosol Ca2+ and subsequent activation of phosphorylase kinase, and is independent of the simultaneous increase in concentration of cyclic AMP. Phosphorylation of synthase R to the D form does not depend on the presence of Ca2+ in the extracellular phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-4165(78)90233-7DOI Listing

Publication Analysis

Top Keywords

cyclic amp
16
human polymorphonuclear
8
polymorphonuclear leukocytes
8
phosphorylase activity
8
synthase-r conversion
8
concentration cyclic
8
phosphorylase activation
8
activation phosphorylase
8
phosphorylase
6
cyclic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!