Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The goal of this study was to investigate the novel hypothesis that bone marrow kinase in the X chromosome (Bmx), an established inflammatory mediator of pathological angiogenesis, promotes lymphangiogenesis.
Methods And Results: We have recently demonstrated a critical role for Bmx in inflammatory angiogenesis. However, the role of Bmx in lymphangiogenesis has not been investigated. Here, we show that in wild-type mice, Bmx is upregulated in lymphatic vessels in response to vascular endothelial growth factor (VEGF). In comparison with wild-type mice, Bmx-deficient mice mount weaker lymphangiogenic responses to VEGF-A and VEGF-C in 2 mouse models. In vitro, Bmx is expressed in cultured human dermal microvascular lymphatic endothelial cells. Furthermore, pharmacological inhibition and short interfering RNA mediated silencing of Bmx reduces VEGF-A and VEGF-C-induced signaling and lymphatic endothelial cell tube formation. Mechanistically, we demonstrated that Bmx differentially regulates VEGFR-2 and VEGFR-3 receptor signaling pathways: Bmx associates with and directly regulates VEGFR-2 activation, whereas Bmx associates with VEGFR-3 and regulates downstream signaling without an effect on the receptor autophosphorylation.
Conclusions: Our in vivo and in vitro results provide the first insight into the mechanism by which Bmx mediates VEGF-dependent lymphangiogenic signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106279 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.110.214999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!