In soybean [Glycine max (L.) Merr.], manual cross-pollination to produce large quantities of hybrid seed is difficult and time consuming. Identification of an environmentally stable male-sterility system could make hybrid seed production commercially valuable. In soybean, 2 environmentally sensitive male-sterile, female-fertile mutants (ms8 and msp) have been identified. Inheritance studies showed that sterility in both mutants is inherited as a single gene. The objectives of this study were to 1) confirm that msp and ms8 are independent genes; 2) identify the soybean chromosomes that contain the msp and the ms8 genes using bulked segregant analyses (BSAs); and 3) make a genetic linkage map of the regions containing these genes. Mapping populations consisting of 176 F(2) plants for ms8 and 134 F(2) plants for msp were generated. BSA revealed that Sat_389 and Satt172 are closely associated markers with ms8 and msp, respectively. Map location of Sat_389 suggested that the ms8 gene is located on chromosome 7; molecular linkage group (MLG) M. Map location of Satt172 indicated that the msp gene is located on chromosome 2 (MLG Dlb). Genetic linkage maps developed using F(2) populations revealed that ms8 is flanked by a telomere and Sat_389 and msp is flanked by Sat_069 and GMES4176. The region between the telomere and Sat_389 is physically 160 Kb. Soybean sequence information revealed that there are 13 genes present in that region. Protein BLASTP analyses revealed that homologs of 3 of the 13 genes are known to a play role in cell division, suggesting putative candidates for ms8.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esq100DOI Listing

Publication Analysis

Top Keywords

environmentally sensitive
8
sensitive male-sterile
8
hybrid seed
8
ms8
8
ms8 msp
8
msp ms8
8
genetic linkage
8
map location
8
gene located
8
located chromosome
8

Similar Publications

Background: Hemorrhagic fever with renal syndrome (HFRS) is a climate-sensitive zoonotic disease that poses a significant public health burden worldwide. While previous studies have established associations between meteorological factors and HFRS incidence, there remains a critical knowledge gap regarding the heterogeneity of these effects across diverse epidemic regions. Addressing this gap is essential for developing region-specific prevention and control strategies.

View Article and Find Full Text PDF

The hydrothermal synthesis is presented of copper-doped carbon dots (Cu-CDs) from citric acid, urea, and copper chloride, resulting in blue-fluorescent particles with stable emission at 438 nm when excited at 340 nm. Through comprehensive spectroscopic and microscopic characterization (FTIR, XPS, UV, and HRTEM), the Cu-CDs demonstrated remarkable stability across varying pH levels, ionic strengths, temperatures, and UV exposure. Notably, Cu-CDs exhibit ultra-sensitive and selective detection of hexavalent chromium [Cr(VI)] ions in aqueous environments driven by fluorescence quenching.

View Article and Find Full Text PDF

Introduction: To investigate the relationship between serum high-density lipoprotein (HDL) cholesterol and bone mineral density (BMD) in vitamin D-deficient population.

Materials And Methods: This study was a cross-sectional study. From January to December 2020, 2583 middle-aged and older adult aged 40 and above were randomly selected in the Health Management Center of the Affiliated Hospital of Guizhou Medical University for health examination and questionnaire survey.

View Article and Find Full Text PDF

Genomic prediction applies to any agro- or ecologically relevant traits, with distinct ontologies and genetic architectures. Selecting the most appropriate model for the distribution of genetic effects and their associated allele frequencies in the training population is crucial. Linear regression models are often preferred for genomic prediction.

View Article and Find Full Text PDF

Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!