CD31(+) T cells, or so-called "angiogenic T cells," have been shown to demonstrate vasculoprotective and neovasculogenic qualities. The influence of age on CD31(+) T-cell number and function is unclear. We tested the hypothesis that circulating CD31(+) T-cell number and migratory capacity are reduced, apoptotic susceptibility is heightened, and telomere length is shortened with advancing age in adult humans. Thirty-six healthy, sedentary men were studied: 12 young (25 ± 1 yr), 12 middle aged (46 ± 1 yr), and 12 older (64 ± 2 yr). CD31(+) T cells were isolated from peripheral blood samples by magnetic-activated cell sorting. The number of circulating CD31(+) T cells (fluorescence-activated cell sorting analysis) was lower (P < 0.01) in older (24% of CD3(+) cells) compared with middle-aged (38% of CD3(+) cells) and young (40% of CD3(+) cells) men. Migration (Boyden chamber) to both VEGF and stromal cell-derived factor-1α was markedly blunted (P < 0.05) in cells harvested from middle-aged [306.1 ± 45 and 305.6 ± 46 arbitrary units (AU), respectively] and older (231 ± 65 and 235 ± 62 AU, respectively) compared with young (525 ± 60 and 570 ± 62 AU, respectively) men. CD31(+) T cells from middle-aged and older men demonstrated greater apoptotic susceptibility, as staurosporine-stimulated intracellular caspase-3 activation was ∼ 40% higher (P < 0.05) than young. There was a progressive age-related decline in CD31(+) T-cell telomere length (young: 10,706 ± 220 bp; middle-aged: 10,179 ± 251 bp; and older: 9,324 ± 192 bp). Numerical and functional impairments in this unique T-cell subpopulation may contribute to diminished angiogenic potential and greater cardiovascular risk with advancing age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006402 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00601.2010 | DOI Listing |
Front Med (Lausanne)
December 2024
Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
Introduction: Cardiovascular disease is the major cause of premature death in chronic kidney disease (CKD) and vascular damage is often detected belatedly, usually evaluated by expensive and invasive techniques. CKD involves specific risk factors that lead to vascular calcification and atherosclerosis, where inflammation plays a critical role. However, there are few inflammation-related markers to predict vascular damage in CKD.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The inflammatory response is associated with cardiac repair and ventricular remodeling after myocardial infarction (MI). The key inflammation regulatory factor thymic stromal lymphopoietin (TSLP) plays a critical role in various diseases. However, its role in cardiac repair after MI remains uncertain.
View Article and Find Full Text PDFAnn Rheum Dis
November 2024
Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
J Neurooncol
October 2024
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
Objective: To investigate the expression features of common anti-glioma CAR-T targets (B7H3, CSPG4, EGFRv III, HER2 and IL-13Ra2) in gliomas with different grades and molecular subtypes, and explore the association of target expression with glioma malignant or immune phenotypes including immune evasion, stemness, antigen presentation, and tumor angiogenesis.
Methods: Opal™ Multiplex immunofluorescence staining was performed on glioma tissues to detect the expression of targets, and biomarkers related to the phenotypes.
Results: High variety of CAR-T target expression among glioma subtypes was observed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!