A cross sectional study using environmental and biological samples was implemented to assess the association between arsenic (As) concentrations in the environment and urinary As levels of residents living in an area where the soil is naturally As rich. As was measured in drinking water, atmospheric particulate matter, and soil and a geographic information system was used to assign environmental concentrations closest to the participants' dwellings and the sum of inorganic As and metabolites in urine samples. The only potential source of As environmental contamination was from soil with a range of 13-131 mg As/kg of dry matter. As(V) was the only species present among As extracted from the analyzed soil samples. The chemical extraction showed a poor mobility of As soil. There was no difference between child and teenager, and adult urinary As concentrations, though men had higher urinary As concentrations than women (p<0.001). Given the important differences in lifestyle between 7-18 year olds, men, and women, these groups were analyzed separately. Whilst we were unable to find a stable model for the 7-18 year old group, for the adult men group we found that seafood consumption in the 3 days prior to the investigation (p=0.02), and beer (p=0.03) and wine consumption in the 4 days before the study, were associated with As urinary levels (μg/L). In adult women, creatinine was the only variable significantly associated with As urinary concentration (μg/L). The concentrations we measured in soils were variable and although high, only moderately so and no link between As concentrations in the soil and urinary As concentrations could be found for either men or women. Some individual factors explained half of the variability of adult men urinary As levels. The unexplained part of the variability should be searched notably in As mobility in soil and uncharacterized human behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2010.08.039 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Plant Improvement and Valorization of Agro-resources, National School of Engineers of Sfax, University of Sfax, Sfax LR.16ES20, Tunisia.
Urinary tract infections (UTIs) are recognized as the second most common medical condition, following respiratory infections. Despite the availability of numerous efficacious antibiotics for the management of UTIs, the rising incidence of bacterial resistance presents significant challenges in the treatment of these infections. Bacteria are endowed with the ability to reproduce and develop resistance mechanisms against antibiotics.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:
Pediatr Nephrol
January 2025
Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia.
Background: Serum and urinary uromodulin are emerging as potential cardiovascular risk factors. The aim of our study was to determine uromodulin in both serum and urine to evaluate their potential as early cardiovascular risk markers and markers of kidney function in children and young adults.
Methods: This case-control study included 72 participants - 42 children and young adults with chronic kidney disease stages 1-2 and 30 healthy controls.
Int J Mol Sci
January 2025
Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA.
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!