Background: Correlating the features of the actual executed movement with the associated cortical activations can enhance the reliability of the functional Magnetic Resonance Imaging (fMRI) data interpretation. This is crucial for longitudinal evaluation of motor recovery in neurological patients and for investigating detailed mutual interactions between activation maps and movement parameters.Therefore, we have explored a new set-up combining fMRI with an optoelectronic motion capture system, which provides a multi-parameter quantification of the performed motor task.
Methods: The cameras of the motion system were mounted inside the MR room and passive markers were placed on the subject skin, without any risk or encumbrance. The versatile set-up allows 3-dimensional multi-segment acquisitions including recording of possible mirror movements, and it guarantees a high inter-sessions repeatability.We demonstrated the integrated set-up reliability through compatibility tests. Then, an fMRI block-design protocol combined with kinematic recordings was tested on a healthy volunteer performing finger tapping and ankle dorsal- plantar-flexion. A preliminary assessment of clinical applicability and perspectives was carried out by pre- and post rehabilitation acquisitions on a hemiparetic patient performing ankle dorsal- plantar-flexion. For all sessions, the proposed method integrating kinematic data into the model design was compared with the standard analysis.
Results: Phantom acquisitions demonstrated the not-compromised image quality. Healthy subject sessions showed the protocols feasibility and the model reliability with the kinematic regressor. The patient results showed that brain activation maps were more consistent when the images analysis included in the regression model, besides the stimuli, the kinematic regressor quantifying the actual executed movement (movement timing and amplitude), proving a significant model improvement. Moreover, concerning motor recovery evaluation, after one rehabilitation month, a greater cortical area was activated during exercise, in contrast to the usual focalization associated with functional recovery. Indeed, the availability of kinematics data allows to correlate this wider area with a higher frequency and a larger amplitude of movement.
Conclusions: The kinematic acquisitions resulted to be reliable and versatile to enrich the fMRI images information and therefore the evaluation of motor recovery in neurological patients where large differences between required and performed motion can be expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955635 | PMC |
http://dx.doi.org/10.1186/1743-0003-7-49 | DOI Listing |
Cerebellum
January 2025
Institute of Cognitive Science Marc Jeannerod, CNRS/UMR 5229, 69500, Bron, France.
While the cerebellum's role in orchestrating motor execution and routines is well established, its functional role in supporting cognition is less clear. Previous studies claim that motricity and cognition are mapped in different areas of the cerebellar cortex, with an anterior/posterior dichotomy. However, most of the studies supporting this claim either use correlational methods (neuroimaging) or are lesion studies that did not consider central covariates (such as age, gender, treatment presence, and deep nuclei impairment) known to influence motor and cognitive recoveries in patients.
View Article and Find Full Text PDFJBJS Rev
November 2024
Division of Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Anschutz Medical Center, Aurora, Colorado.
Background: Modern nerve-to-nerve transfers are a significant advancement in peripheral nerve surgery. Nerve transfers involve transferring donor nerves or branches to recipient nerves close to the motor end unit, leading to earlier reinnervation and preservation of the musculotendinous units in proximal nerve injuries. After nerve reinnervation, function may be superior to traditional tendon transfer techniques in terms of strength and independent motion.
View Article and Find Full Text PDFMed J Malaysia
January 2025
Universiti Malaysia Sarawak, Faculty of Medicine and Health Sciences, Kota Samarahan, Sarawak, Malaysia.
Transcranial direct current stimulation (tDCS) has emerged as a potential adjunct therapy for post-stroke motor rehabilitation. While conventional rehabilitation methods remain the primary approach to improving motor function after stroke, many patients experience incomplete recovery, necessitating the exploration of additional interventions. This commentary article examines the role of tDCS in poststroke motor recovery, focusing on its mechanisms, efficacy, and limitations.
View Article and Find Full Text PDFPlast Surg (Oakv)
January 2025
Division of Plastic and Reconstructive Surgery, Saint Louis University Hospital, St. Louis, MO, USA.
Brachial plexus birth injury (BPBI) is a condition affecting newborns and involves damage to the nerve fibers compromising the brachial plexus during birth. Although most newborns recover spontaneously, a large subset require surgery to regain function, and others will have permanent disability despite intervention. Deciding when to pursue surgical intervention remains a challenge for clinicians treating BPBI.
View Article and Find Full Text PDFFront Neurol
December 2024
The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.
Objective: Sciatic nerve injuries often lead to severe pain and motor dysfunction, causing serious impact on patients' quality of life. Acupuncture, as one of the main therapies in traditional Chinese medicine, is gradually gaining attention in the field of nerve injury due to its potential role in pain relief and nerve repair. Bibliometric and scientific knowledge mapping methods were employed to analyze the current research status, hotspots, and development trends of acupuncture for sciatic nerve injury (SNI) over the past decade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!