Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers, but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film buildup without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness, and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the case of multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer is also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multicomponent, and noncontact patterning for the simple production of stratified patterns that are much needed in advanced devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136089 | PMC |
http://dx.doi.org/10.1021/ja104735a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!