Purpose: Orthopedic surgeons use different types of screws for bone fixation. Whereas hard cortical bone requires a screw with a fine pitch, in softer cancellous bone a wider pitch might help prevent micromotion and eventually lead to greater implant stability. The aim of this study was to validate the assumption that fine-pitch implants are appropriate for cortical bone and wide-pitch implants are appropriate for cancellous bone.

Materials And Methods: Wide-pitch and fine-pitch implants were inserted in both hard (D1 and D2) bone and soft (D3 and D4) bone, which was simulated by separate experimental blocks of cellular rigid polyurethane foam. A series of insertion sites in D1-D2 and D3-D4 experimental blocks were prepared using 1.5-mm and 2.5-mm drills. The final torque required to insert each implant was recorded.

Results: Wide-pitch implants displayed greater insertion torque (20% more than the fine-pitch implants) in cancellous bone and were therefore more suitable than fine-pitch implants.

Conclusion: It is more appropriate to use a fine pitch design for implants, in conjunction with a 2.5-mm osteotomy site, in dense cortical bone (D1 or D2), whereas it is recommended to choose a wide-pitch design for implants, in conjunction with a 1.5-mm osteotomy site, in softer bone (D3 or D4).

Download full-text PDF

Source

Publication Analysis

Top Keywords

cortical bone
12
fine-pitch implants
12
bone
10
insertion torque
8
fine pitch
8
cancellous bone
8
implants appropriate
8
wide-pitch implants
8
experimental blocks
8
design implants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!