Background: In the enteropathogenic Yersinia species, RovA regulates the expression of invasin, which is important for enteropathogenic pathogenesis but is inactivated in Yersinia pestis. Investigation of the RovA regulon in Y. pestis at 26 °C has revealed that RovA is a global regulator that contributes to virulence in part by the direct regulation of psaEFABC. However, the regulatory roles of RovA in Y. pestis at 37 °C, which allows most virulence factors in mammalian hosts to be expressed, are still poorly understood.
Methodology/principal Findings: The transcriptional profile of an in-frame rovA mutant of Y. pestis biovar Microtus strain 201 was analyzed under type III secretion system (T3SS) induction conditions using microarray techniques, and it was revealed that many cell-envelope and transport/binding proteins were differentially expressed in the ΔrovA mutant. Most noticeably, many of the T3SS genes, including operons encoding the translocon, needle and Yop (Yersinia outer protein) effectors, were significantly up-regulated. Analysis of Yop proteins confirmed that YopE and YopJ were also expressed in greater amounts in the mutant. However, electrophoresis mobility shift assay results demonstrated that the His-RovA protein could not bind to the promoter sequences of the T3SS genes, suggesting that an indirect regulatory mechanism is involved. Transmission electron microscopy analysis indicated that there are small loose electron dense particle-like structures that surround the outer membrane of the mutant cells. The bacterial membrane permeability to CFSE (carboxyfluorescein diacetate succinimidyl ester) was significantly decreased in the ΔrovA mutant compared to the wild-type strain. Taken together, these results revealed the improper construction and dysfunction of the membrane in the ΔrovA mutant.
Conclusions/significance: We demonstrated that the RovA regulator plays critical roles in the construction and functioning of the bacterial membrane, which sheds considerable light on the regulatory functions of RovA in antibiotic resistance and environmental adaptation. The expression of T3SS was upregulated in the ΔrovA mutant through an indirect regulatory mechanism, which is possibly related to the altered membrane construction in the mutant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941471 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012840 | PLOS |
Plant Commun
January 2025
Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
January 2025
Department of Medicine, Division of Clinical Infectious Diseases, Showa University School of Medicine, Tokyo, Japan.
Objectives: In Pseudomonas aeruginosa isolates, emerging meropenem resistance beyond imipenem resistance has become a problem. In this study, we aimed to investigate the relationship between the in vivo acquisition of antimicrobial resistance in fluoroquinolone- and carbapenem-resistant P. aeruginosa clinical isolates, the underlying molecular mechanisms, and exposure to antimicrobial agents.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States. Electronic address:
Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).
View Article and Find Full Text PDFPharmacol Res
January 2025
Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, 430030, PR China. Electronic address:
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Center for Molecular Medicine, Maine Health Institute for Research, 81 Research Drive, Scarborough, ME, USA.
Hepatic stores of Vitamin A (retinol) are mobilized and metabolized in the heart following myocardial infarction. The physiological consequences of this mobilization are poorly understood. Here we used dietary depletion in a lecithin retinol acyltransferase mutant mouse line to induce Vitamin A deficiency and investigate the effects on cardiac function and recovery from myocardial infarction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!