The eukaryotic cell cycle is a process controlled by protein assemblies, of which the key subunits are serine-threonine cyclin-dependent kinases (CDKs). Timely association and dissociation of these assemblies ensure that the cell division program is executed correctly. The challenge to unravel the rules of the plant cell cycle results from the multiplicity of the process-regulating genes that emerged through genome duplications during the evolution of flowering plants. Despite the increasing knowledge on the plant cell cycle control, little is known about the composition of the different CDK-Cyclin complexes and their spatio-temporal occurrence. The binary interactions of the previously annotated 58 Arabidopsis thaliana core cell cycle proteins were tested in two high-throughput protein-protein interaction (PPI) assays: the bimolecular fluorescence complementation (BiFC) and the yeast two-hybrid. The resulting PPI network was integrated with available cycle phase-dependent gene expression data and subcellular localization information, revealing distinct cell cycle clusters acting at different cell division stages. Additionally, the BiFC assay revealed that three D-type cyclins, CYCD4;1, CYCD4;2 and CYCD5;1, form active kinase complexes with CDKA;1 and CDKB1;1 in vivo because they induce cell divisions in differentiated tobacco (Nicotiana benthamiana) epidermal cells. We demonstrate that these complexes promote cell proliferation in Arabidopsis and we discuss their putative mode of action in plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115367PMC
http://dx.doi.org/10.4161/psb.5.10.13037DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
cell
9
bimolecular fluorescence
8
fluorescence complementation
8
protein-protein interaction
8
cell division
8
plant cell
8
cycle
6
high-throughput bimolecular
4
complementation protein-protein
4

Similar Publications

Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.

View Article and Find Full Text PDF

The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.

View Article and Find Full Text PDF

Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.

Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!