Analysis and construction of pathogenicity island regulatory pathways in Salmonella enterica serovar Typhi.

J Integr Bioinform

Centre for Chemical Biology, Universiti Sains Malaysia, 1st Floor, Block B, No 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia. moc.liamg@nullbccnaeyus

Published: September 2010

Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella.

Download full-text PDF

Source
http://dx.doi.org/10.2390/biecoll-jib-2010-145DOI Listing

Publication Analysis

Top Keywords

pathways salmonella
8
salmonella enterica
8
enterica serovar
8
serovar typhi
8
signal transduction
8
analysis construction
4
construction pathogenicity
4
pathogenicity island
4
island regulatory
4
regulatory pathways
4

Similar Publications

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis.

J Adv Res

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China. Electronic address:

Introduction: Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections.

View Article and Find Full Text PDF

Various serotypes have caused numerous foodborne outbreaks associated with food vehicles in different categories. This study provides evidence on the occurrence and inter-relations between serotypes and the number of deaths mediated by the number of illnesses and hospitalizations. Confirmed foodborne outbreaks of serotypes (n = 2868) that occurred between 1998 and 2021 were obtained from the Centers for Disease Control and Prevention National Outbreak Reporting System.

View Article and Find Full Text PDF

A large number of cases of infectious colitis caused by multidrug-resistant (MDR) bacteria, such as , can result in colon damage and severe inflammation. Vanilla, a widely utilized flavor and fragrance compound, is extensively used in various food. However, the effect of vanilla on MDR -induced infectious colitis has received less attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!