Stress responsiveness varies over the ultradian glucocorticoid cycle in a brain-region-specific manner.

Endocrinology

Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research/Leiden University Medical Centre, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

Published: November 2010

Glucocorticoid hormones are released in rapid hourly hormone bursts by the adrenal gland. These ultradian oscillations are fundamental to hypothalamic-pituitary-adrenal activity and transcriptional regulation of glucocorticoid responsive genes. The physiological relevance of glucocorticoid pulsatility is however unknown. Using a novel automated infusion system, we artificially created different patterns (modulating pulse amplitude) of corticosterone (cort). Identical amounts of cort either in constant or in hourly pulses were infused into adrenalectomized rats. At the end of the infusion period, either during rising or falling concentrations of a cort pulse, animals were exposed to 99 dB noise stress (10 min). Pulsatile cort infusion led to a differential stress response, dependent on the phase of the pulse during which the stress was applied. Although constant administration of cort resulted in a blunted ACTH response to the stressor, a brisker response occurred during the rising phase of plasma cort than during the falling phase. This phase-dependent effect was also seen in the behavioral response to the stressor, which was again greater during the rising phase of each cort pulse. Within the brain itself, we found differential C-fos activation responses to noise stress in the pituitary, paraventricular nucleus, amygdala, and hippocampus. This effect was both glucocorticoid pulse amplitude and phase dependent, suggesting that different stress circuits are differentially responsive to the pattern of glucocorticoid exposure. Our data suggest that the oscillatory changes in plasma glucocorticoid levels are critical for the maintenance of normal physiological reactivity to a stressor and in addition modulate emotionality and exploratory behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2010-0832DOI Listing

Publication Analysis

Top Keywords

pulse amplitude
8
cort pulse
8
noise stress
8
response stressor
8
rising phase
8
glucocorticoid
7
cort
7
stress
6
pulse
5
phase
5

Similar Publications

Interoceptive Brain Processing Influences Moral Decision Making.

Hum Brain Mapp

December 2024

Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.

Not harming others is widely regarded as a fundamental tenet of human morality. Harm aversion based on the consequences of an action is called utilitarianism while focusing on the action itself is associated with deontology. This study investigated how interoceptive processing affects the neural processing of utilitarian and deontological moral decision-making.

View Article and Find Full Text PDF

Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.

Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.

View Article and Find Full Text PDF

We demonstrate that amplitude modulation of a high-peak-power femtosecond laser pulse allows to change fundamentally the frequency-angular structure (FAS) of the supercontinuum formed during the filamentation in both molecular and atomic gases. Particularly, modulation with a 4-hole mask forms an inverted pattern of conical emission (CE) with its predominance in the Stokes wing of the pulse spectrum. We explain this phenomenon as a joint effect of self-phase modulation and temporal pulse splitting of interfering beamlets formed by the modulating mask.

View Article and Find Full Text PDF

Chlorophyll fluorescence responses to CO availability reveal crassulacean acid metabolism in epiphytic orchids.

J Plant Res

December 2024

Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.

Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids.

View Article and Find Full Text PDF

Low-temperature scanning tunneling spectroscopy is a key method to probe electronic and magnetic properties down to the atomic scale, but suffers from extreme vibrational sensitivity. This makes it challenging to employ closed-cycle cooling with its required pulse-type vibrational excitations, albeit this is mandatory to avoid helium losses for counteracting the continuously raising helium prices. Here, we describe a compact ultra-high vacuum scanning tunneling microscope (STM) system with an integrated primary pulse tube cooler (PTC) for closed-cycle operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!