A calcium sensitive univalent cation channel could be formed by lysotriphosphoinositide on an artificial bilayer membrane made of oxidized cholesterol. The modified membrane was selectively permeable to univalent cations, but was only very sparingly permeable to anions or divalent cations. Selectivity sequence among group IA cations was Rb+ greater than Cs+ greater than Na+ greater than K+ greater than Li+. The conductance of the membrane was increased up to a value of about 10-2 ohm-1/cm2 with an increase in the concentration of univalent cation, and was drastically depressed by a relatively small increase in the concentration of calcium ion or other divalent cations. The sequence of depressing efficiency among divalent cations was Zn+ greater than Cd2+ greater than Ca2+ greater than Sr2+ greater than Mg2+.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(78)90031-7DOI Listing

Publication Analysis

Top Keywords

univalent cation
12
divalent cations
12
cation channel
8
channel formed
8
formed lysotriphosphoinositide
8
greater
8
increase concentration
8
cations
5
calcium-sensitive univalent
4
lysotriphosphoinositide bilayer
4

Similar Publications

Article Synopsis
  • Prussian blue effectively treats radiocaesium and thallium poisoning, with its nanoparticles (PBNPs) showing promise in binding radioactive thallium for nuclear medicine.
  • Understanding the interaction between thallium and PBNPs is key to enhancing their performance and stability in medical applications.
  • This study reveals that thallium ions can significantly alter the ionic composition of PBNPs without compromising their structural integrity, paving the way for tailored designs in nuclear medicine.
View Article and Find Full Text PDF

Metal-Ion Intercalation Mechanisms in Vanadium Pentoxide and Its New Perspectives.

Nanomaterials (Basel)

December 2023

Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece.

The investigation into intercalation mechanisms in vanadium pentoxide has garnered significant attention within the realm of research, primarily propelled by its remarkable theoretical capacity for energy storage. This comprehensive review delves into the latest advancements that have enriched our understanding of these intricate mechanisms. Notwithstanding its exceptional storage capacity, the compound grapples with challenges arising from inherent structural instability.

View Article and Find Full Text PDF

Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids.

View Article and Find Full Text PDF

We present the development and demonstration of a neural network (NN) model for fast and accurate prediction of whether or not a chosen analyte is focused by an isotachophoresis (ITP) buffer system. The NN model is useful in the rapid evaluation of possible ITP chemistries applicable to analytes of interest. We trained and tested the NN model for univalent species based on extensive data sets of over 10,000 anionic and 10,000 cationic ITP simulations.

View Article and Find Full Text PDF

Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl--glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!