Background: Treatment strategies for Retinoblastoma (RB), the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K+ channels.

Case Presentation: Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the vegf-a, flt-1, kdr, and hif1-α transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K+ channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue.

Conclusions: We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the vegf-a, flt-1, kdr and hif1-α transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the herg1 gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress the relevance of the VEGF-A pathway in RB and the correlation with hERG1, making aggressive and recurrent RB cases good candidates for antiangiogenesis therapies based on the targeting of VEGF-A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955607PMC
http://dx.doi.org/10.1186/1471-2407-10-504DOI Listing

Publication Analysis

Top Keywords

vegf-a pathway
20
conservative treatment
12
vegf-a
10
herg1 channels
8
invasive growth
8
sporadic bilateral
8
benefit conservative
8
provide evidence
8
evidence vegf-a
8
pathway up-regulated
8

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease worldwide, affecting approximately 40% of individuals with type 2 diabetes (T2DM) and 30% of those with type 1 diabetes (T1DM). As the prevalence of diabetes continues to rise, the burden of DKD is expected to grow correspondingly. This review explores the roles of key molecular pathways, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling, in DKD pathogenesis and potential therapeutic applications.

View Article and Find Full Text PDF

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) inhibitors play a pivotal role in treating various tumors; however, the clinical characteristics and molecular mechanisms of their associated heart failure (HF) remain incompletely understood.

Methods: We investigated the epidemiological characteristics of VEGF or VEGFR inhibitors [VEGF(R)i]-related heart failure (VirHF) using the global pharmacovigilance database Vigibase. The phenotypic features and molecular mechanisms of VirHF were characterized using VEGF(R)i-treated mouse models through a combination of echocardiography, histopathological analysis, and transcriptome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!