Background: We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals.
Methods: Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg) were randomly separated into two supplement groups: i) whey protein isolate (WPH; n = 9); or ii) carbohydrate (CHO; n = 8). Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal) for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH) levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05.
Results: Isometric knee extension strength was significantly higher following WPH supplementation 3 (P < 0.05) and 7 (P < 0.01) days into recovery from exercise-induced muscle damage compared to CHO supplementation. In addition, strong tendencies for higher isokinetic forces (extension and flexion) were observed during the recovery period following WPH supplementation, with knee extension strength being significantly greater (P < 0.05) after 7 days recovery. Plasma LDH levels tended to be lower (P = 0.06) in the WPH supplemented group during recovery.
Conclusions: The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955583 | PMC |
http://dx.doi.org/10.1186/1550-2783-7-30 | DOI Listing |
Food Chem
January 2025
School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Int J Mol Sci
January 2025
General Dentistry, Department of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan.
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ 59030, Türkiye.
The aims of this study were to improve the functional and nutritional properties of fermented black carrot juice by using sweet and acid whey in the production of fermented black carrot juice, to transform whey into a value-added product and to determine the effect of whey addition on the fermentation process. Whey was utilized as a water substitute in the formulation of the beverage prior to fermentation, and five distinct formulations were developed based on the type and proportion of whey (0% whey (control sample), 25% acid whey, 100% acid whey, 25% sweet whey, 100% sweet whey). Microbiological, sensorial, phytochemical, and physicochemical analyses were performed on samples taken during fermentation and on samples fermented and then resting.
View Article and Find Full Text PDFFoods
January 2025
Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway.
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon () was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!