Natural selection ultimately acts on genes and other DNA sequences. Adaptations that are good for the gene can have adverse effects at higher levels of organization, including the individual or the population. Mobile genetic elements illustrate this principle well, because they can self-replicate within a genome at a cost to their host. As they are costly and can be transmitted horizontally, mobile elements can be seen as genomic parasites. It has been suggested that mobile elements may cause the extinction of their host populations. In organisms with very large populations, such as most bacteria, individual selection is highly effective in purging genomes of deleterious elements, suggesting that extinction is unlikely. Here we investigate the conditions under which mobile DNA can drive bacterial lineages to extinction. We use a range of epidemiological and ecological models to show that harmful mobile DNA can invade, and drive populations to extinction, provided their transmission rate is high and that mobile element-induced mortality is not too high. Population extinction becomes more likely when there are more elements in the population. Even if elements are costly, extinction can still occur because of the combined effect of horizontal gene transfer, a mortality induced by mobile elements. Our study highlights the potential of mobile DNA to be selected at the population level, as well as at the individual level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1420-9101.2010.02106.x | DOI Listing |
Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
Background: Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).
View Article and Find Full Text PDFBiology (Basel)
December 2024
Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Mobile genetic elements help drive horizontal gene transfer and bacterial evolution. Conjugative elements and temperate bacteriophages can be stably maintained in host cells. They can alter host physiology and regulatory responses and typically carry genes that are beneficial to their hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!