Toxoplasma gondii is an intracellular protozoan parasite that infects a wide variety of warm-blooded hosts and can have devastating effects in the developing fetus as well as the immunocompromised host. An appreciation of how this organism interacts with the host immune system is crucial to understanding the pathogenesis of this disease. The last decade has been marked by the application of various imaging techniques, such as bioluminescent imaging as well as confocal and multiphoton microscopy to study toxoplasmosis. The ability to manipulate parasites to express fluorescent/bioluminescent markers or model antigens/enzymes combined with the development of reporter mice that allow the detection of distinct immune populations have been crucial to the success of many of these studies. These approaches have permitted the visualization of parasites and immune cells in real-time and provided new insights into the nature of host-pathogen interactions. This article highlights some of the advances in imaging techniques, their strengths and weaknesses, and how these techniques have impacted our understanding of the interaction between parasites and various immune populations during toxoplasmosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032660 | PMC |
http://dx.doi.org/10.2217/fmb.10.97 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!