The aromatic amino acid tryptophan plays an important role in protein electron-transfer and in enzyme catalysis. Tryptophan is also used as a probe of its local protein environment and of dynamic changes in this environment. Raman spectroscopy of tryptophan has been an important tool to monitor tryptophan, its radicals, and its protein environment. The proper interpretation of the Raman spectra requires not only the correct assignment of Raman bands to vibrational normal modes but also the correct identification of the Raman bands in the spectrum. A significant amount of experimental and computational work has been devoted to this problem, but inconsistencies still persist. In this work, the Raman spectra of indole, 3-methylindole (3MI), tryptophan, and several of their isotopomers have been measured to determine the isotope shifts of the Raman bands. Density functional theory calculations with the B3LYP functional and the 6-311+G(d,p) basis set have been performed on indole, 3MI, 3-ethylindole (3EI), and several of their isotopomers to predict isotope shifts of the vibrational normal modes. Comparison of the observed and predicted isotope shifts results in a consistent assignment of Raman bands to vibrational normal modes that can be used for both assignment and identification of the Raman bands. For correct assignments, it is important to determine force field scaling factors for each molecule separately, and scaling factors of 0.9824, 0.9843, and 0.9857 are determined for indole, 3MI, and 3EI, respectively. It is also important to use more than one parameter to assign vibrational normal modes to Raman bands, for example, the inclusion of isotope shifts other than those obtained from H/D-exchange. Finally, the results indicate that the Fermi doublet of indole may consist of just two fundamentals, whereas one fundamental and one combination band are identified for the Fermi resonance that gives rise to the doublet in 3MI and tryptophan.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp107295pDOI Listing

Publication Analysis

Top Keywords

raman bands
24
isotope shifts
20
vibrational normal
16
normal modes
16
raman spectra
12
raman
10
spectra indole
8
indole 3-methylindole
8
observed predicted
8
predicted isotope
8

Similar Publications

Management of heterogeneous construction, renovation, and demolition (CRD) wood residues in Québec brings into light, a widespread topic under discussion related to their current disposal methods in landfills, that may lead to environmental concerns. With rising forfeitures from a legal standpoint, alternative treatment methods for CRD wood wastes are being explored. Thermochemical biomass conversion techniques can be employed to depolymerize low-quality end-of-life CRD wood and valorize it to bio-based products.

View Article and Find Full Text PDF

In this work, we investigated individual bacteria belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!