Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Circulating bone marrow-derived immature cells, including endothelial progenitor cells, have been implicated in homeostasis of the microvasculature. Decreased levels of circulating endothelial progenitor cells, associated with aging and/or cardiovascular risk factors, correlate with poor clinical outcomes in a range of cardiovascular diseases. Herein, we transplanted bone marrow cells from young stroke-prone spontaneously hypertensive rats (SHR-SP) into aged SHR-SP, the latter not exposed to radiation or chemotherapy. Analysis of recipient peripheral blood 28 days after transplantation revealed that 5% of circulating blood cells were of donor origin. Cerebral infarction was induced on day 30 posttransplantation. Animals transplanted with bone marrow from young SHR-SP displayed an increase in density of the microvasculature in the periinfarction zone, reduced ischemic brain damage and improved neurologic function. In vitro analysis revealed enhanced activation of endothelial nitric oxide synthase and reduced activation p38 microtubule-associated protein (MAP) kinase, the latter associated with endothelial apoptosis, in cultures exposed to bone marrow-derived mononuclear cells from young animals versus cells from aged counterparts. Our findings indicate that partial rejuvenation of bone marrow from aged rats with cells from young animals enhances the response to ischemic injury, potentially at the level of endothelial/vascular activation, providing insight into a novel approach ameliorate chronic vascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063619 | PMC |
http://dx.doi.org/10.1038/jcbfm.2010.165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!