Objectives: The goals of this study were to determine the role of organic cation transporter 3 (OCT3) in the pharmacological action of metformin and to identify and functionally characterize genetic variants of OCT3 with respect to the uptake of metformin and monoamines.
Methods: For pharmacological studies, we evaluated metformin-induced activation of AMP-activated protein kinase, a molecular target of metformin. We used quantitative PCR and immunostaining to localize the transporter and isotopic uptake studies in cells transfected with OCT3 and its nonsynonymous genetic variants for functional analyses.
Results: Quantitative PCR and immunostaining showed that OCT3 was expressed high on the plasma membrane of skeletal muscle and liver, target tissues for metformin action. Both the OCT inhibitor, cimetidine, and OCT3-specific short hairpin RNA significantly reduced the activating effect of metformin on AMP-activated protein kinase. To identify genetic variants in OCT3, we used recent data from the 1000 Genomes and the Pharmacogenomics of Membrane Transporters projects. Six novel missense variants were identified. In functional assays, using various monoamines and metformin, three variants, T44M (c.131C>T), T400I (c.1199C>T) and V423F (c.1267G>T) showed altered substrate specificity. Notably, in cells expressing T400I and V423F, the uptakes of metformin and catecholamines were significantly reduced, but the uptakes of metformin, 1-methyl-4-phenylpyridinium and histamine by T44M were significantly increased more than 50%. Structural modeling suggested that these two variants may be located in the pore lining (T400) or proximal (V423) membrane-spanning helixes.
Conclusion: Our study suggests that OCT3 plays a role in the therapeutic action of metformin and that genetic variants of OCT3 may modulate metformin and catecholamine action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976715 | PMC |
http://dx.doi.org/10.1097/FPC.0b013e32833fe789 | DOI Listing |
Clin Dysmorphol
December 2024
Department of Pediatrics, Kirikkale University Medical School, Kirikkkale, Turkey.
Clin Dysmorphol
December 2024
Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama.
Clin Dysmorphol
December 2024
Department of Pediatric Genetics.
Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.
View Article and Find Full Text PDFClin Dysmorphol
January 2025
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
Introduction: Agrin, encoded by AGRN, plays a vital role in the acetylcholine receptor clustering pathway, and any defects in this pathway are known to cause congenital myasthenic syndrome (CMS) 8 in early childhood with variable fatigable muscle weakness. The most severe or lethal form of CMS manifests as a fetal akinesia deformation sequence (FADS). To date, only one family has been reported with an association of null variants in AGRN and a lethal FADS.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.
Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!