A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. | LitMetric

PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts.

Proc Natl Acad Sci U S A

Departments of Surgery and Pathology, Keck School of Medicine, University of Southern California, and The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.

Published: October 2010

A zebrafish heart can fully regenerate after amputation of up to 20% of its ventricle. During this process, newly formed coronary blood vessels revascularize the regenerating tissue. The formation of coronary blood vessels during zebrafish heart regeneration likely recapitulates embryonic coronary vessel development, which involves the activation and proliferation of the epicardium, followed by an epithelial-to-mesenchymal transition. The molecular and cellular mechanisms underlying these processes are not well understood. We examined the role of PDGF signaling in explant-derived primary cultured epicardial cells in vitro and in regenerating zebrafish hearts in vivo. We observed that mural and mesenchymal cell markers, including pdgfrβ, are up-regulated in the regenerating hearts. Using a primary culture of epicardial cells derived from heart explants, we found that PDGF signaling is essential for epicardial cell proliferation. PDGF also induces stress fibers and loss of cell-cell contacts of epicardial cells in explant culture. This effect is mediated by Rho-associated protein kinase. Inhibition of PDGF signaling in vivo impairs epicardial cell proliferation, expression of mesenchymal and mural cell markers, and coronary blood vessel formation. Our data suggest that PDGF signaling plays important roles in epicardial function and coronary vessel formation during heart regeneration in zebrafish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951463PMC
http://dx.doi.org/10.1073/pnas.0915016107DOI Listing

Publication Analysis

Top Keywords

pdgf signaling
20
vessel formation
12
coronary blood
12
epicardial cells
12
epicardial function
8
blood vessel
8
regenerating zebrafish
8
zebrafish hearts
8
zebrafish heart
8
blood vessels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!