Although the oligomers formed by Aβ peptides appear to be the primary cytotoxic species in Alzheimer's disease, detailed information about their structures appears to be lacking. In this article, we use exhaustive replica exchange molecular dynamics and an implicit solvent united-atom model to study the structural properties of Aβ monomers, dimers, and tetramers. Our analysis suggests that the conformational ensembles of Aβ dimers and tetramers are very similar, but sharply distinct from those sampled by the monomers. The key conformational difference between monomers and oligomers is the formation of β-structure in the oligomers occurring together with the loss of intrapeptide interactions and helix structure. Our simulations indicate that, independent of oligomer order, the Aβ aggregation interface is largely confined to the sequence region 10-23, which forms the bulk of interpeptide interactions. We show that the fractions of β structure computed in our simulations and measured experimentally are in good agreement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941018 | PMC |
http://dx.doi.org/10.1016/j.bpj.2010.07.008 | DOI Listing |
JACS Au
December 2024
Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
It has become increasingly evident that the conformational distributions of intrinsically disordered proteins or regions are strongly dependent on their amino acid compositions and sequence. To facilitate a systematic investigation of these sequence-ensemble relationships, we selected a set of 16 naturally occurring intrinsically disordered regions of identical length but with large differences in amino acid composition, hydrophobicity, and charge patterning. We probed their conformational ensembles with single-molecule Förster resonance energy transfer (FRET), complemented by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy as well as small-angle X-ray scattering (SAXS).
View Article and Find Full Text PDFCell Rep Phys Sci
November 2024
Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE.
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Faculty of Chemistry (UPV/EHU), Manuel Lardizabal 3, Donostia-San Sebastian 20018, Spain; DIPC, Manuel Lardizabal 4, Donostia-San Sebastian 20018, Spain. Electronic address:
Mimosine, a non-essential amino acid derived from plants, has a strong affinity for binding divalent and trivalent metal cations, including Zn, Ni, Fe, and Al. This ability endows mimosine with significant antimicrobial and anti-cancer properties, making it a promising candidate for therapeutic applications. Previous research has demonstrated the effectiveness of mimosine-containing peptides as metal chelators, offering a safer alternative to conventional chelation agents.
View Article and Find Full Text PDFCurr Protoc
December 2024
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Intrinsically disordered proteins (IDPs) make up around 30% of eukaryotic proteomes and play a crucial role in cellular processes and in pathological conditions such as neurodegenerative disorders and cancers. However, IDPs exhibit dynamic conformational ensembles and are often involved in the formation of biomolecular condensates. Understanding the function of IDPs is critical to research in many areas of science.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!