Background: To assess the feasibility and quality of an anonymous linkage of 1) MONICA (MONItoring of trends and determinants in CArdiovscular disease, three waves between 1984 and 1993) data with 2) census and mortality records of the Swiss National Cohort in order to establish a mortality follow-up until 2008. Many countries feature the defect of lacking general population cohorts because they have missed to provide for follow-up information of health surveys.
Methods: Record linkage procedures were used in a multi-step approach. Kaplan-Meier curves from our data were contrasted with the survival probabilities expected from life tables for the general population, age-standardized mortality rates from our data with those derived from official cross-sectional mortality data. Cox regression models were fit to investigate the influence of covariates on survival.
Results: 97.8% of the eligible 10,160 participants (25-74y at baseline) could be linked to a census (1990: 9,737; 2000: 8,749), mortality (1,526, 1984-2008) and/or emigration record (320, 1990-2008). Linkage success did not differ by any key study characteristic. Results of survival analyses were robust to linkage step or certainty of a correct link. Loss to follow-up between 1990 and 2000 amounted to 4.7%. MONICA participants had lower mortality than the general population, but similar mortality patterns, (e.g. variation by educational level, marital status or region).
Conclusions: Using anonymized census and death records allowed an almost complete mortality follow-up of MONICA study participants of up to 25 years. Lower mortality compared to the general population was in line with a presumable 'healthy participant' selection in the original MONICA study. Apart from that, the derived data set reproduced known mortality patterns and showed only negligible potential for selection bias introduced by the linkage process. Anonymous record linkage was feasible and provided robust results. It can thus provide valuable information, when no cohort study is available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955001 | PMC |
http://dx.doi.org/10.1186/1471-2458-10-562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!