Fabry disease is caused by an X-linked deficiency of the lysosomal enzyme α-galactosidase A (GLA) and has been treated successfully with enzyme replacement therapy (ERT). Gene therapy has been proposed as an alternative to ERT due to the presumed advantages of continuous, endogenous production of the therapeutic enzyme. GLA production in the liver and its therapeutic efficacy in the Fabry mouse have been demonstrated previously with various viral vector systems. In consideration of the potential advantages of using the salivary glands as endogenous GLA biosynthesis sites, we explored the feasibility of this approach in the Fabry mouse. GLA -/0 or -/- mice received an adenoviral vector (2 × 10(10) or 1 × 10(9) viral particles) expressing GLA to the right submandibular gland via oral cannulation of the submandibular duct. Four days later, animals were sacrificed; saliva, plasma, kidney, liver, and brain were collected and assayed using ELISA, Western blot, and a GLA enzymatic activity assay using both traditional fluorescence methods and isotope dilution mass spectrometry by following the U.S. EPA Method 6800. GLA activity was significantly elevated in the serum and liver of both treatment groups, and improvement in the kidney was marginally significant (P < 0.069) in the high-dose group. Notably, we found that liver and salivary gland produce different glycoforms of the GLA transgene. Only small numbers of adenoviral genomes were observed in the livers of treated animals, but in four of 14 in the high-dose groups, liver levels of adenovirus exceeded 20 copies/μg, indicating that the sequestration in the salivary gland was imperfect at high doses. Taken together, these results indicate that the salivary gland-based gene therapy for Fabry disease is promising, and further studies with advanced viral vector gene delivery systems (e.g., adeno-associated virus) for long-term treatment appear to be warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057212PMC
http://dx.doi.org/10.1089/hum.2010.069DOI Listing

Publication Analysis

Top Keywords

fabry mouse
12
salivary glands
8
gla
7
α-galactosidase expressed
4
expressed salivary
4
glands partially
4
partially corrects
4
corrects organ
4
organ biochemical
4
biochemical deficits
4

Similar Publications

The detection of antidrug antibodies (ADAs) is important for monitoring patients with Fabry disease who are undergoing enzyme replacement therapy (ERT) with recombinant α-galactosidase A (GLA) drugs, as ADAs can cause allergic reactions and reduce therapeutic efficacy. Various immunological methods, particularly enzyme-linked immunosorbent assay (ELISA), are widely used to measure serum ADA titers in patients with Fabry disease. However, estimating and comparing results of ELISA is challenging because of the absence of a reference antibody.

View Article and Find Full Text PDF

We developed a novel adeno-associated virus 5 gene therapy (AAV5-GLA) expressing human alpha-galactosidase A (GLA) under the control of a novel, small and strong, liver-restricted promoter. We assessed the preclinical potential of AAV5-GLA for treating Fabry disease, an X-linked hereditary metabolic disorder resulting from mutations in the gene encoding GLA that lead to accumulation of the substrates globotriaosylceramide and globotriaosylsphingosine, causing heart, kidney, and central nervous system dysfunction. Effects of intravenously administered AAV5-GLA were evaluated in (1) GLA-knockout mice aged 7-8 weeks (early in disease) and 20 weeks (nociception phenotype manifestation) and (2) cynomolgus macaques during an 8-week period.

View Article and Find Full Text PDF

Targeted nanoliposomes to improve enzyme replacement therapy of Fabry disease.

Sci Adv

December 2024

Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.

The central nervous system represents a major target tissue for therapeutic approach of numerous lysosomal storage disorders. Fabry disease arises from the lack or dysfunction of the lysosomal alpha-galactosidase A (GLA) enzyme, resulting in substrate accumulation and multisystemic clinical manifestations. Current enzyme replacement therapies (ERTs) face limited effectiveness due to poor enzyme biodistribution in target tissues and inability to reach the brain.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dura, yet the role of these vessels during stroke is unclear. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we demonstrate stroke-induced lymphangiogenesis near the cribriform plate, peaking at day 7 and regressing by day 14. Lymphangiogenesis is restricted to the cribriform plate and deep cervical lymph nodes and is regulated by VEGF-C/VEGFR-3 signaling.

View Article and Find Full Text PDF

Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of the lysosomal enzyme ⍺-galactosidase-A (⍺-Gal A), resulting in widespread accumulation of terminal galactose-containing glycosphingolipids (GSLs) and the impairment of multiple organ systems. Thrombotic events are common in Fabry patients, with strokes and heart attacks being significant contributors to a shortened lifespan in patients of both genders. Previously, we developed an ⍺-Gal A-knockout (KO) murine model that recapitulates most Fabry symptomologies and demonstrated that platelets from KO males become sensitized to agonist-mediated activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!