We report the synthesis of a niobium cyclopropyl complex, Tp(Me2)NbMe(c-C(3)H(5))(MeCCMe), and show that thermal loss of methane from this compound generates an intermediate that is capable of activating both aliphatic and aromatic C-H bonds. Isotopic labeling, trapping studies, a detailed kinetic analysis, and density functional theory all suggest that the active intermediate is an η(2)-cyclopropene complex formed via β-hydrogen abstraction rather than an isomeric cyclopropylidene species. C-H activation chemistry of this type represents a rather unusual reactivity pattern for η(2)-alkene complexes but is favored in this case by the strain in the C(3) ring which prevents the decomposition of the key intermediate via loss of cyclopropene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja1061505 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access -substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of Ir-Ir-Ir exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.
View Article and Find Full Text PDFChem Sci
December 2024
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.
View Article and Find Full Text PDFChemistry
January 2025
Boreskov Institute of Catalysis SB RAS, Siberian Branch of Russian Academy of Sciences, RUSSIAN FEDERATION.
Cu-modified zeolites provide methane conversion to methanol with high selectivity under mild conditions. The activity of different possible Cu-sites for methane transformation is still under discussion. Herein, ZSM-5 zeolite has been loaded with Cu2+ cations (1.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
The temperature-dependent switching behavior of the saccharin radical is demonstrated, enabling the regiodivergent C-H and C-H functionalization of quinoxalin-2(1)-ones. The saccharin radical was generated through N-Br bond cleavage in -bromosaccharin (NBSA) and was observed to transition between radical and radicophile roles. At -10 °C, it was utilized as a radicophile, resulting in 100% C-amination, while at +35 °C, it acted as a radical, leading to exclusive C-bromination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!