Poly(glycidyl methacrylate), PGMA, was prepared via ATRP in bulk solution, and its epoxy groups were further acid-hydrolyzed in order to obtain a polymer with glycerol moieties (noted POH). The POH chain end C-Br bonds were subjected to a nucleophilic attack by NaN(3), resulting in azide-terminated POH (POH-N(3)). The CNTs were modified by in-situ-generated alkynylated diazonium cations from the para-alkynylated aniline of the formulas H(2)N-C(6)H(4)-C≡C-H, yielding CNT-C(6)H(4)-C≡C-H nanotubes. The azide-functionalized polymer POH-N(3) was clicked to the alkynyl-modified CNTs giving CNT@POH hybrids, which were further subjected to an oxidation resulting in carboxylated polymer-modified CNTs (noted CNT@PCOOH). The as-designed hairy CNTs served as efficient platforms for the in-situ synthesis and massive loading of 3 nm sized palladium nanoparticles (NPs). The CNT@PCOOH@Pd heterostructures prepared so far exhibited an efficient catalytic effect in the C-C Suzuki coupling reaction and were regenerated up to four times without any significant loss of catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la102801dDOI Listing

Publication Analysis

Top Keywords

coupling reaction
8
hairy carbon
4
carbon nanotube@nano-pd
4
nanotube@nano-pd heterostructures
4
heterostructures design
4
design characterization
4
characterization application
4
application suzuki
4
suzuki c-c
4
c-c coupling
4

Similar Publications

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

Since hydrogen is a promising alternative to fossil fuels due to its high energy density and environmental friendliness, water electrolysis for hydrogen production has received widespread attentions wherein the development of active and stable catalytic materials is a key research direction. This article designs a dual transition metal doped functional graphene for hydrogen evolution reaction via density functional theory calculations. Among varied combinations, 16 candidates are screened out that are expected to be stable as reflected by the criterion of formation energy Ef < 0 and active due to its free energy of hydrogen adsorption ∆GH within the window of ±0.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Palladium-Catalyzed Modular Synthesis of Thiophene-Fused Polycyclic Aromatics via Sequential C-H Activation.

Org Lett

January 2025

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

A palladium-catalyzed Catellani-type [2+2+2] annulation reaction of aryl iodides, bromothiophenes, and norbornadiene, which proceeds via a tandem Heck coupling/double C-H bond activation and retro-Diels-Alder pathway to access thiophene-fused polyaromatics, is reported. The key feature of this protocol represents a NBD/NBE retaining annulation.

View Article and Find Full Text PDF

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!