The purpose of this work was to evaluate the potential of HAIYPRH (T7) peptide as a ligand for constructing tumor-targeting drug delivery systems. T7 could target to transferrin-receptor (TfR) through a cavity on the surface of TfR and then transport into cells via endocytosis with the help of transferrin (Tf). In this study, T7-conjugated poly(ethylene glycol) (PEG)-modified polyamidoamine dendrimer (PAMAM) (PAMAM-PEG-T7) was successfully synthesized and further loaded with doxorubicin (DOX), formulating PAMAM-PEG-T7/DOX nanoparticles (NPs). In vitro, almost 100% of DOX was released during 2 h in pH 5.5, while only 55% of DOX was released over 48 h in pH 7.4. The cellular uptake of DOX could be significantly enhanced when treated with T7-modified NPs in the presence of Tf. Also, the in vitro antitumor effect was enhanced markedly. The IC(50) of PAMAM-PEG-T7/DOX NPs with Tf was 231.5 nM, while that of NPs without Tf was 676.7 nM. T7-modified NPs could significantly enhance DOX accumulation in the tumor by approximately 1.7-fold compared to that of unmodified ones and by approximately 5.3-fold compared to that of free DOX. For in vivo antitumor studies, tumor growth of mice treated with PAMAM-PEG-T7/DOX NPs was significantly inhibited compared to that of mice treated with PAMAM-PEG/DOX NPs and saline. The study provides evidence that PAMAM-PEG-T7 can be applied as a potential tumor-targeting drug delivery system. T7 may be a promising ligand for targeted drug delivery to the tumor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/mp100185fDOI Listing

Publication Analysis

Top Keywords

drug delivery
12
tumor-targeting drug
8
dox released
8
t7-modified nps
8
pamam-peg-t7/dox nps
8
mice treated
8
nps
7
dox
6
peptide-conjugated pamam
4
pamam targeted
4

Similar Publications

Background: Cystic echinococcosis (CE) is a common neglected parasitic disease. Nanoparticles containing drugs have been widely utilized in various formulations for several purposes, including improving the bioavailability of drugs by increasing the solubility and dissolution rate of the nanoparticles. The purpose of this study was to evaluate the effects of solid lipid nanoparticles containing albendazole and conjugated to albumin (B-SLN + ABZ) as a novel treatment approach for hydatid cysts in vivo.

View Article and Find Full Text PDF

Role of PCBP2 in regulating nanovesicles loaded with curcumin to mitigate neuroferroptosis in neural damage caused by heat stroke.

J Nanobiotechnology

December 2024

Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.

Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).

Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!