A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of node-based sample units for estimating soybean aphid (Hemiptera: Aphididae) densities in field cage experiments. | LitMetric

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is currently the most important insect threat to soybean, Clycine max (L.) Merr., production in the North Central United States. Field cage studies are a key tool in investigating the potential of natural enemies and host plant resistance to control this pest. However, a major constraint in the use of cage studies is the limited number of treatments and replicates that can be used as aphid densities frequently become so large as to limit the number of experimental units that can be quantified. One way to overcome this limitation is to develop methods that estimate whole-plant aphid densities based on a reduced sampling plan. Here, we extend an existing method, node-sampling, used for estimating aphid populations in open field conditions and apply it to caged populations. We show that parameters calculated under open field conditions are inappropriate to estimate caged populations. In contrast, using four independent data sets of caged populations and a cross-validation technique, we demonstrate that a three-node sampling unit and a weighted formula provide accurate and robust estimates of whole-plant aphid density. This method reduced the number of aphids counted per plant by and average of 60%, with greater reductions at higher aphid densities. We further demonstrate that nearly identical statistical results were obtained when whole-plant or node-sampling estimates were used in the analysis of two case studies. The reduced sample unit method developed here saves time without sacrificing efficiency so that more plants, replications, or studies can be conducted that will lead to improved soybean aphid management.

Download full-text PDF

Source
http://dx.doi.org/10.1603/ec10012DOI Listing

Publication Analysis

Top Keywords

soybean aphid
12
aphid densities
12
caged populations
12
aphid
8
hemiptera aphididae
8
field cage
8
cage studies
8
whole-plant aphid
8
open field
8
field conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!