Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Today, lithographic methods enable combinatorial synthesis of >50,000 oligonucleotides per cm(2), an advance that has revolutionized the whole field of genomics. A similar development is expected for the field of proteomics, provided that affordable, very high-density peptide arrays are available. However, peptide arrays lag behind oligonucleotide arrays. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with lithography, which adds up to an excessive number of coupling cycles. A combinatorial synthesis based on electrically charged solid amino acid particles resolves this problem. A computer chip consecutively addresses the different charged particles to a solid support, where, when completed, the whole layer of solid amino acid particles is melted at once. This frees hitherto immobilized amino acids to couple all 20 different amino acids in one single coupling reaction to the support. The method should allow for the translation of entire genomes into a set of overlapping peptides to be used in proteome research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-60761-845-4_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!