Spastic paraplegia type 4 (SPG4) is the most common autosomal dominant hereditary SPG caused by mutations in the SPAST gene. We studied the four-generation pedigree of a Japanese family with autosomal dominant hereditary SPG both clinically and genetically. Twelve available family members (ten affected; two unaffected) and two spouses were enrolled in the study. The clinical features were hyperreflexia in all four limbs, spasticity of the lower extremities, impaired vibration sense, mild cognitive impairment confirmed by the Wechsler Adult Intelligence Scale-Third Edition, and peripheral neuropathy confirmed by neurophysiological examinations. All four female patients experienced miscarriages. The cerebrospinal fluid tau levels were mildly increased in two of three patients examined. Linkage analyses revealed the highest logarithm of odds score of 2.64 at 2p23-p21 where the SPAST gene is located. Mutation scanning of the entire exonic regions of the SPAST gene by direct sequencing revealed no mutations. Exonic copy number analysis by real-time quantitative polymerase chain reaction revealed heterozygous deletion of exons 1 to 4 of the SPAST gene. Breakpoint analysis showed that the centromeric breakpoint was located within intron 4 of SPAST while the telomeric breakpoint was located within intron 3 of the neighboring DPY30 gene, causing a deletion of approximately 70 kb ranging from exons 1 to 3 of DPY30 to exons 1 to 4 of SPAST. To our knowledge, this is the first report of SPG4 associated with partial deletions of both the SPAST and DPY30 genes. The partial heterozygous deletion of DPY30 could modify the phenotypic expression of SPG4 patients with this pedigree.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10048-010-0260-7DOI Listing

Publication Analysis

Top Keywords

spast gene
16
spast dpy30
8
spastic paraplegia
8
paraplegia type
8
autosomal dominant
8
dominant hereditary
8
hereditary spg
8
heterozygous deletion
8
exons spast
8
breakpoint located
8

Similar Publications

Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.

View Article and Find Full Text PDF

Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases.

Genes (Basel)

November 2024

Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.

As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).

View Article and Find Full Text PDF

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

[Successful application of preimplantation genetic testing combined with thirdgeneration sequencing for blocking hereditary spastic paraplegia].

Nan Fang Yi Ke Da Xue Xue Bao

November 2024

Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjng 210002, China.

Article Synopsis
  • A family with hereditary spastic paraplegia (HSP) due to mutations in the SPAST gene underwent third-generation sequencing (TGS) and preimplantation genetic testing (PGT) to prevent passing the condition to their children.
  • They identified a specific mutation in the SPAST gene and used advanced genetic testing during in vitro fertilization to select embryos free of the mutation.
  • The successful process resulted in the birth of a healthy baby girl, demonstrating that TGS and PGT-M are effective methods for managing hereditary diseases and ensuring the health of offspring.
View Article and Find Full Text PDF
Article Synopsis
  • Spastic Paraplegia 4 (SPG4) is a serious neurological disorder that causes increasing weakness and stiffness in the legs, affecting walking ability, and is linked to mutations in the SPAST gene which encodes the spastin protein.
  • The review examines the two main forms of spastin (M1 and M87), their genetic structure, and their uncertain roles in SPG4, highlighting the need for more research on how these isoforms contribute to the disease's progression.
  • The authors propose new theories on how M1- and M87-spastin interact, suggesting this could lead to new treatment approaches for SPG4 and emphasizing the importance of understanding the specific functions of each spastin
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!