Spastic paraplegia type 4 (SPG4) is the most common autosomal dominant hereditary SPG caused by mutations in the SPAST gene. We studied the four-generation pedigree of a Japanese family with autosomal dominant hereditary SPG both clinically and genetically. Twelve available family members (ten affected; two unaffected) and two spouses were enrolled in the study. The clinical features were hyperreflexia in all four limbs, spasticity of the lower extremities, impaired vibration sense, mild cognitive impairment confirmed by the Wechsler Adult Intelligence Scale-Third Edition, and peripheral neuropathy confirmed by neurophysiological examinations. All four female patients experienced miscarriages. The cerebrospinal fluid tau levels were mildly increased in two of three patients examined. Linkage analyses revealed the highest logarithm of odds score of 2.64 at 2p23-p21 where the SPAST gene is located. Mutation scanning of the entire exonic regions of the SPAST gene by direct sequencing revealed no mutations. Exonic copy number analysis by real-time quantitative polymerase chain reaction revealed heterozygous deletion of exons 1 to 4 of the SPAST gene. Breakpoint analysis showed that the centromeric breakpoint was located within intron 4 of SPAST while the telomeric breakpoint was located within intron 3 of the neighboring DPY30 gene, causing a deletion of approximately 70 kb ranging from exons 1 to 3 of DPY30 to exons 1 to 4 of SPAST. To our knowledge, this is the first report of SPG4 associated with partial deletions of both the SPAST and DPY30 genes. The partial heterozygous deletion of DPY30 could modify the phenotypic expression of SPG4 patients with this pedigree.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10048-010-0260-7 | DOI Listing |
Neurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.
As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).
View Article and Find Full Text PDFEur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Nan Fang Yi Ke Da Xue Xue Bao
November 2024
Department of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjng 210002, China.
Mov Disord
November 2024
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!