Pseudomonas chlororaphis GP72 is a root-colonizing biocontrol strain isolated from the green pepper rhizosphere that synthesizes two phenazine derivatives: phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ). The 2-OH-PHZ derivative shows somewhat stronger broad-spectrum antifungal activity than PCA, but its conversion mechanism has not yet been clearly revealed. The aim of this study was to clone and analyze the phenazine biosynthesis gene cluster in this newly found strain and to improve the production of 2-OH-PHZ by gene disruption and precursor addition. The conserved phenazine biosynthesis core operon in GP72 was cloned by PCR, and the unknown sequences located upstream and downstream of the core operon were detected by random PCR gene walking. This led to a complete isolation of the phenazine biosynthesis gene cluster phzIRABCDEFG and phzO in GP72. Gene rpeA and phzO were insertionally mutated to construct GP72AN and GP72ON, respectively, and GP72ANON collectively. The inactivation of rpeA resulted in a fivefold increase in the production of PCA, as well as 2-OH-PHZ. The addition of exogenous precursor PCA to the broth culture, to determine the conversion efficiency of PCA to 2-OH-PHZ under current culture conditions, revealed that PCA had a positive feedback effect on its own accumulation, leading to enhanced synthesis of both PCA and 2-OH-PHZ. The production of 2-OH-PHZ by GP72AN increased to about 170 μg ml(-1), compared with just 5 μg ml(-1) for the wild type. The hypothesis of biosynthetic pathway for 2-OH-PHZ from PCA was confirmed by identification of 2-hydroxyphenazine-1-carboxylic acid as an intermediate in the culture medium of the high-phenazine producing GP72AN mutant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-010-2863-1 | DOI Listing |
Bioresour Technol
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.
Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.
View Article and Find Full Text PDFNat Commun
January 2025
Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Microbiology Lab, Department of Zoology, Government College University.
Antibiotic resistance is a world wide problem mainly in developing countries. In this work, coelomic fluid (PCF) and paste (PBP) of Pheretima posthuma was assessed for its potential as antibiofilm and anti-quorum sensing (QS) agent against pathogenic bacterial biofilms. PCF and PBP were extracted and biofilm formation time kinetics was examined using crystal violet staining method by utilizing four bacterial isolates in bispecies biofilm (06 combinations; MH5-MH10) and multi species biofilms (05 combinations; MH11-MH15).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster () from , converting to a robust producer of phenazine antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!