Purpose: Perfusion in healthy adults is gravity-dependent. Little is known about lung perfusion in the preterm infant. The aim of this study was to describe the regional distribution of blood volume within the thorax in preterm infants receiving synchronised volume-targeted mechanical ventilation (SIPPV + TTV) and to compare this to regional distribution of tidal ventilation using electrical impedance tomography (EIT).

Methods: Stable supine ventilated preterm infants (<32-week gestation) were studied. Three sets of artefact-free 30-s EIT recordings of the right hemithorax were filtered in the cardiac and respiratory frequency domains to differentiate impedance change due to blood (ΔZ (c)) and gas volume (ΔZ (v)). The distribution of ΔZ (c) and ΔZ (v) in the anterior-to-posterior regions of the right chest were compared. Infants were subdivided by age (≤ 7, >7 days) and oxygen requirement.

Results: A total of 5,471 beats were analysed from 26 infants (78 recordings); mean (standard deviation (SD)) gestational age was 26 (2) weeks and mean (SD) postnatal age was 9 (10) days. The median (interquartile range) ΔZ (c) in the anterior half of the hemithorax was 1.41-fold (0.88-2.11) greater than that in the posterior half. The geometric centre of ΔZ (c) was located at 46.7% of the anterior-posterior thoracic distance, compared to a more centrally located ΔZ (v) (49.6%; p < 0.0001). The ΔZ (v)/ΔZ (c) ratio was 1.7 in the anterior third of the chest and 2.2 in the posterior (p < 0.0001). The area under the curve (AUC) analysis showed that ΔZ (c) was more evenly distributed in infants >7 days of age and not influenced by oxygen requirement.

Conclusions: There are gravity dependent differences in the distribution of blood volume and ventilation in the ventilated preterm chest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00134-010-2049-4DOI Listing

Publication Analysis

Top Keywords

regional distribution
12
distribution blood
12
blood volume
12
preterm infant
8
mechanical ventilation
8
preterm infants
8
ventilated preterm
8
infants days
8
preterm
5
Δz
5

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Objective: The physician-scientist workforce is shrinking in the United States. Academic otologists/neurotologists face a diverse set of barriers to successful careers. We aimed to characterize the factors affecting contemporary otology/neurotology surgeon-scientists.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!