This study tested the capacity of fluoride (F) to prevent the disuse-associated reduction in bone formation/growth. Suspending young male Wistar rats by the tail for 2-2.5 weeks reduced femoral cortical (P less than 0.05) and trabecular (P less than 0.01) bone areas. Tetracycline labelling showed that the decrement in cortical area was largely due to a reduction in the percent periosteal mineralizing surface (PsMS). Periosteal mineral apposition rate (PsMAR) was not affected. Endosteal mineralizing surface (EsMS) and mineral apposition rate (EsMAR) were significantly stimulated spontaneously during the second week of suspension. F treatment (5 mg/kg/day i.p.) prevented the loss in bone area, and established a trend toward increased PsMS without affecting EsMS and EsMAR. None of these changes are associated with alterations in serum Ca, P or osteocalcin. F treatment in hypokinetic animals caused a decrease in serum PTH (-21% compared to control; P = 0.001). We conclude that F prevents the development of hypokinetic osteopenia in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0169-6009(90)90027-dDOI Listing

Publication Analysis

Top Keywords

mineralizing surface
8
mineral apposition
8
apposition rate
8
skeletal effects
4
effects sodium
4
sodium fluoride
4
fluoride hypokinesia
4
hypokinesia study
4
study tested
4
tested capacity
4

Similar Publications

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Vitamin D is crucial for maintaining bone health and development, and bone mineral accumulation during childhood and adolescence affects long-term bone health. Vitamin D deficiency has been widely recognized as one of the main causes of osteoporosis and fractures, especially during the growth and development stage of children. Recent studies have shown that vitamin D deficiency may affect the deviation of bone development in children by mediating lipid metabolism disorders, but its specific mechanism of action has not been fully elucidated.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!