Two methods to measure the cladding diameter of single-mode fibers are presented. The first method is based on an interference fringe measurement technique. Interference fringe spacing at two different planes is measured to determine the cladding diameter of the fiber. The theory of the fringe formation in the interferometeric arrangement using single-mode fibers is discussed. It is theoretically shown that the far-field overlapping Gaussian field distribution from the fibers shifts the position of the fringe maxima and minima. As a special case of unit fringe visibility the minima positions do not shift, whereasthe maxima positions are shifted. In the case of a Lloyd mirror arrangement it is shown that fringes can be obtained from a rough surface as well. A lens is used in the second method to image the two identical point sources that cause the interference. Through the use of the magnification and spacing of the images, the cladding diameter is estimated. It is shown that the accuracy of the fiber cladding-diameter measurement can be enhanced by generating multiple point sources. Consistent results of the fiber cladding diameter have been obtained with the proposed methods. Fiber cladding-diameter measurements with a standard error of less than 0.15 µm can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.32.005989DOI Listing

Publication Analysis

Top Keywords

cladding diameter
16
single-mode fibers
8
interference fringe
8
point sources
8
fiber cladding-diameter
8
diameter
5
fiber
5
fringe
5
diameter measurement
4
measurement single-mode
4

Similar Publications

Flexible infrared image fiber bundles (FBs) are capable of delivering thermal images of areas that are difficult for ordinary thermal cameras to access while making the imaging systems compact and lightweight. Thus, FB-based thermal imaging systems show great potential in some important applications, such as infrared endoscopy, aircraft infrared warning, and satellite remote sensing. In most applications, FBs are required to have high overall transmittance (OT) and high spatial resolution (), but the fabrication of such high-performance FBs is still a challenge.

View Article and Find Full Text PDF

Effects of Preformed Composition and Pore Size on Microstructure and Properties of SiC/SiC Composites via Reactive Melt Infiltration.

Materials (Basel)

November 2024

Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

This study investigated the influence of preformed composition and pore size on the microstructure and properties of SiC/SiC composites fabricated via reactive melt infiltration (RMI). The process began with the impregnation of SiC fiber cloth with phenolic resin, followed by lamination and pyrolysis. Subsequent steps included further impregnations with phenolic resin, SiC slurry, and carbon black slurry, each followed by additional pyrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses a highly efficient Tm,Ho:YLF laser operating in both continuous-wave (CW) and passively Q-switched (PQS) modes, emitting at 2.05 µm.
  • The laser is built with a 70-µm diameter depressed cladding waveguide created through femtosecond laser inscription, achieving a low propagation loss of 0.14 dB/cm and a refractive index contrast of 8.3 × 10.
  • In CW mode, the laser produces up to 2 W of output power at a pump power of 4.14 W, while in PQS mode, it generates ultra-short 19.6-ns pulses with a power slope efficiency of 18
View Article and Find Full Text PDF
Article Synopsis
  • - The multicore fiber amplifier is essential for advanced spatial division multiplexing (SDM) communication, but it has more complex challenges than traditional single-core systems, prompting the search for a more efficient solution.
  • - An innovative triple cladding 13-core Er/Yb co-doped microstructured fiber (13CEYDMOF) is proposed to balance performance factors like efficiency and cost, featuring unique peanut-shaped air holes that improve excitation and reduce fiber size.
  • - Experimental results show that the 13CEYDMOF achieved impressive performance metrics, including an average gain of 23.8 dB and a low noise figure, making it suitable for transmitting 13 spatial channels effectively in the telecommunication band.
View Article and Find Full Text PDF

In this work, we propose an Nd-doped double-layer anti-resonant phosphate fiber with a core diameter of 50 µm for high-power single-mode 900 nm laser generation. Double-layer interlaced anti-resonant elements were designed here to enhance the fundamental mode confinement capability of the large-mode-area Nd-doped fiber core. Moreover, a double-layer F-P etalon formed between the anti-resonant elements and the inner cladding was analyzed for the first time for fiber loss manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!