A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. | LitMetric

The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and over-expression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor -induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain / MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Over-expression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of sequestering function MCL-1 by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040858PMC
http://dx.doi.org/10.4161/cbt.10.9.13273DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer cells
20
cdk inhibitors
16
cell death
12
enhanced lethality
12
synergistic fashion
12
bax bak
12
cdk inhibitor
12
obatoclax
10
mcl-1
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!